
30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 1/48

HR - People Analytics Project
Solving HR Analytics and gathering information from the
data.
The data is from Kaggle:

User: PAVANSUBHASH

Title: IBM HR Analytics Employee Attrition & Performance

Link: https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

The purpose of the project is to practice my analytical skills with a real HR database, using
my knowledge in Python, Excel, and Power BI. Machine learning techniques will be applied
where possible.

I will analyze the data to obtain valuable insights that allow actions to be taken related to
HR. Also, an attempt will be made to create a comparative of the metrics, by creating data to
simulate the passing years.

I will work with the file 'WA_Fn-UseC_-HR-Employee-Attrition', downloaded from the
Kaggle database.

Hypotheses will be raised, which must be confirmed or rejected by the data. The necessary
dashboards will then be created to visualize the results of the hypotheses raised. Finally, the
conclusions reached will be detailed.

1. Import libraries

2. Importing our data file
It's time to import our file 'WA_Fn-UseC_-HR-Employee-Attrition' to work with it. This is a
.csv file. First, I will explore the data, clean it, and remove those values that are not necessary
to our analysis

In []: import pandas as pd
import numpy as np

This is to ignore warnings. Was a recommendation from my friend Manuel Angel Rodr
import warnings
warnings.filterwarnings('ignore')

In []: df_rawdata = pd.read_csv('WA_Fn_UseC_HR_Employee_Attrition.csv')
df_rawdata.head(5)

https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 2/48

Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education Educa

0 41 Yes Travel_Rarely 1102 Sales 1 2 Life

1 49 No Travel_Frequently 279 Research &
Development 8 1 Life

2 37 Yes Travel_Rarely 1373 Research &
Development 2 2

3 33 No Travel_Frequently 1392 Research &
Development 3 4 Life

4 27 No Travel_Rarely 591 Research &
Development 2 1

5 rows × 35 columns

Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
 'YearsWithCurrManager'],
 dtype='object')

Out[]:

In []: df_rawdata.columns

Out[]:

In []: df_rawdata.info()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 3/48

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Age 1470 non-null int64
 1 Attrition 1470 non-null object
 2 BusinessTravel 1470 non-null object
 3 DailyRate 1470 non-null int64
 4 Department 1470 non-null object
 5 DistanceFromHome 1470 non-null int64
 6 Education 1470 non-null int64
 7 EducationField 1470 non-null object
 8 EmployeeCount 1470 non-null int64
 9 EmployeeNumber 1470 non-null int64
 10 EnvironmentSatisfaction 1470 non-null int64
 11 Gender 1470 non-null object
 12 HourlyRate 1470 non-null int64
 13 JobInvolvement 1470 non-null int64
 14 JobLevel 1470 non-null int64
 15 JobRole 1470 non-null object
 16 JobSatisfaction 1470 non-null int64
 17 MaritalStatus 1470 non-null object
 18 MonthlyIncome 1470 non-null int64
 19 MonthlyRate 1470 non-null int64
 20 NumCompaniesWorked 1470 non-null int64
 21 Over18 1470 non-null object
 22 OverTime 1470 non-null object
 23 PercentSalaryHike 1470 non-null int64
 24 PerformanceRating 1470 non-null int64
 25 RelationshipSatisfaction 1470 non-null int64
 26 StandardHours 1470 non-null int64
 27 StockOptionLevel 1470 non-null int64
 28 TotalWorkingYears 1470 non-null int64
 29 TrainingTimesLastYear 1470 non-null int64
 30 WorkLifeBalance 1470 non-null int64
 31 YearsAtCompany 1470 non-null int64
 32 YearsInCurrentRole 1470 non-null int64
 33 YearsSinceLastPromotion 1470 non-null int64
 34 YearsWithCurrManager 1470 non-null int64
dtypes: int64(26), object(9)
memory usage: 402.1+ KB

3 Data Cleaning
In order to do data cleaning, I will remove the columns that I will not use for our analysis."
However, prior to doing so, I will create a copy of the database "df_rawdata," allowing me to
refer to the original database if necessary.

3.1 Copy the database

In []: # The copy will be called df_padb from dataframe peopleanalyticsdatabase
df_padb = df_rawdata.copy()
df_padb.head()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 4/48

Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education Educa

0 41 Yes Travel_Rarely 1102 Sales 1 2 Life

1 49 No Travel_Frequently 279 Research &
Development 8 1 Life

2 37 Yes Travel_Rarely 1373 Research &
Development 2 2

3 33 No Travel_Frequently 1392 Research &
Development 3 4 Life

4 27 No Travel_Rarely 591 Research &
Development 2 1

5 rows × 35 columns

Number of missing values: Age 0
Attrition 0
BusinessTravel 0
DailyRate 0
Department 0
DistanceFromHome 0
Education 0
EducationField 0
EmployeeCount 0
EmployeeNumber 0
EnvironmentSatisfaction 0
Gender 0
HourlyRate 0
JobInvolvement 0
JobLevel 0
JobRole 0
JobSatisfaction 0
MaritalStatus 0
MonthlyIncome 0
MonthlyRate 0
NumCompaniesWorked 0
Over18 0
OverTime 0
PercentSalaryHike 0
PerformanceRating 0
RelationshipSatisfaction 0
StandardHours 0
StockOptionLevel 0
TotalWorkingYears 0
TrainingTimesLastYear 0
WorkLifeBalance 0
YearsAtCompany 0
YearsInCurrentRole 0
YearsSinceLastPromotion 0
YearsWithCurrManager 0
dtype: int64

Out[]:

In []: # Checking for missing values
missing_values = df_padb.isnull().sum()
print('Number of missing values: ', missing_values)

In []: # Deleting columns that won't be used in the analysis
df_padb.drop(['BusinessTravel', 'DailyRate', 'EmployeeNumber', 'MaritalStatus', 'Nu
df_padb.columns

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 5/48

Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
 'EducationField', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
 'MonthlyIncome', 'MonthlyRate', 'OverTime', 'TotalWorkingYears',
 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
 'YearsInCurrentRole', 'YearsSinceLastPromotion'],
 dtype='object')

3.2 Creating an ID Column

Using a two letter code for the 'Department' and a four random number combination, I will
make an ID for every employee.

Research & Development 961
Sales 446
Human Resources 63
Name: Department, dtype: int64

To generate the two-letter code from the 'Department' column, I will write a function. I will
then use the four random integers to form an array. In order to deploy the values into the
'ID' column later, I will merge the two values and save them in a variable.

Out[]:

In []: # First let's take a look at how many departments we have in the database
departments = df_padb['Department'].value_counts()
print(departments)

In []: # Function to create the code values for the departments
def departments_code(departments):
 if 'Research & Development' in departments:
 return 'RD'
 elif 'Sales' in departments:
 return 'SL'
 else:
 return 'HR'

Now is time to create our random numbers and add them to the TempID column
random_number = np.random.randint(1000, 9999, size=len(df_padb))

Join the two values together
new_data = df_padb['Department'].apply(departments_code) + pd.Series(random_number)

Inserting the new ID column with the values created lately
df_padb.insert(0, 'ID', new_data, True)

df_padb.head()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 6/48

ID Age Attrition Department DistanceFromHome Education EducationField Environm

0 SL8842 41 Yes Sales 1 2 Life Sciences

1 RD9746 49 No Research &
Development 8 1 Life Sciences

2 RD4085 37 Yes Research &
Development 2 2 Other

3 RD8254 33 No Research &
Development 3 4 Life Sciences

4 RD6169 27 No Research &
Development 2 1 Medical

5 rows × 23 columns

dtype('O')

3.3 Replacing the code numbers from columns 'Education', 'EnvironmentSatisfaction',
'JobInvolvement', 'JobSatisfaction', 'PerformanceRating', 'RelationshipSatisfaction', and
'WorkLifeBalance'

To improve the understanding of the data and make working with it easier, I'll change the
code numbers in those columns. I'll convert the values in this task from integer to string
format, then replace the values with their references.

Out[]:

In []: df_padb['ID'].dtype

Out[]:

In []: # Education column
education_ref = {
 1: 'Below College',
 2: 'College',
 3: 'Bachelor',
 4: 'Master',
 5: 'Doctor'
}

df_padb['Education'] = df_padb['Education'].map(education_ref)

'EnvironmentSatisfaction' column
environment_satisfaction_ref = {
 1: 'Low',
 2: 'Medium',
 3: 'High',
 4: 'Very High'
}

df_padb['EnvironmentSatisfaction'] = df_padb['EnvironmentSatisfaction'].map(environ

'JobInvolvement' column
job_involvement_ref = {
 1: 'Low',
 2: 'Medium',
 3: 'High',
 4: 'Very High'
}

df_padb['JobInvolvement'] = df_padb['JobInvolvement'].map(job_involvement_ref)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 7/48

ID Age Attrition Department DistanceFromHome Education EducationField Environm

0 SL8842 41 Yes Sales 1 College Life Sciences

1 RD9746 49 No Research &
Development 8 Below

College Life Sciences

2 RD4085 37 Yes Research &
Development 2 College Other

3 RD8254 33 No Research &
Development 3 Master Life Sciences

4 RD6169 27 No Research &
Development 2 Below

College Medical

5 rows × 23 columns

3.4 Export our data into an Excel spreadsheet

Now that the data has been cleansed and the values have been replaced with their
references, it is time to export the database to an Excel workbook. I will also produce a.csv
file just in case.

4 Working with the ISO 30414-2018
After the data has been cleansed, it's time to utilize the ISO and begin analyzing the
information to provide HR insights.

4.1 DIVERSITY

'JobSatisfaction' column
job_satisfaction_ref = {
 1: 'Low',
 2: 'Medium',
 3: 'High',
 4: 'Very High'
}

df_padb['JobSatisfaction'] = df_padb['JobSatisfaction'].map(job_satisfaction_ref)

'WorkLifeBalance' column
wlb_ref = {
 1: 'Bad',
 2: 'Good',
 3: 'Better',
 4: 'Best'
}

df_padb['WorkLifeBalance'] = df_padb['WorkLifeBalance'].map(wlb_ref)

df_padb.head()

Out[]:

In []: # Exporting the data to an Excel spreadsheet
df_padb.to_excel('imb_analytics_2021.xlsx', sheet_name='hr_analytics_2021', index=F

Exporting the data to a CSV file
df_padb.to_csv('ibm_hranalytics_2021.csv', index=False)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 8/48

To find out the composition and level of diversification of the firm, I will work using the
information provided in the ISO.

4.1.a Creating the column with the age range

Before starting to work with the data, I'm going to create an age range to simplify the work
and establish a better understanding of the different generations that make up our company

ID Age AgeRange Attrition Department DistanceFromHome Education EducationField

0 SL8842 41 38 to 47 Yes Sales 1 College Life Sciences

1 RD9746 49 48 to 57 No Research &
Development 8 Below

College Life Sciences

2 RD4085 37 28 to 37 Yes Research &
Development 2 College Othe

3 RD8254 33 28 to 37 No Research &
Development 3 Master Life Sciences

4 RD6169 27 18 to 27 No Research &
Development 2 Below

College Medica

5 rows × 24 columns

In []: # Function to create the age range
def age_range(age):
 if age >= 18 and age <= 27:
 return '18 to 27'
 elif age >= 28 and age <= 37:
 return '28 to 37'
 elif age >= 38 and age <= 47:
 return '38 to 47'
 elif age >= 48 and age <= 57:
 return '48 to 57'
 else:
 return 'more than 58'

New data
new_age_data = df_padb['Age'].apply(lambda x: pd.Series(age_range(x)))
print(new_age_data)

Inserting the new column into the dataframe
df_padb.insert(loc=df_padb.columns.get_loc('Age')+1, column='AgeRange', value=new_a
df_padb.head()

Out[]:

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 9/48

4.1.b Analysing the data and creating the plots

With the age range column in place, let's review the data and identify the factors required to
create the charts that illustrate the impact of diversity on our organization. I'm going to
create a narrative for every one of these: study field, study level, gender, and age range. We
will be able to see the variety of worker diversity inside our company as a result.

Gaining an understanding of the diversity of our business will help us create a more diverse
workplace and set policies for future hiring.

I'll use matplotlib for the plots.

4.1.b.1 Gender

Let's now examine the gender distribution by looking at the 'Gender' column. The gender
distribution gives us an overview of how gender is spread throughout our business, which
will be helpful for future recruitment efforts.

Male 882
Female 588
Name: Gender, dtype: int64

In []: import matplotlib.pyplot as plt

In []: # Counting the gender values and storage them into a variable
gender_counts = df_padb['Gender'].value_counts()
print(gender_counts)

Total and percentage variables to use on our charts
total_count = gender_counts.sum()
gender_percentage = (gender_counts / total_count) * 100

labels = gender_counts.index
Using a function to create the labels
labels = [f'{gender} ({count})' for gender, count in zip(gender_counts.index, gende

Chart size
fig, ax = plt.subplots(figsize=(8, 10))

Chart generation
plt.pie(gender_counts, labels=labels, autopct='%1.1f%%')
plt.legend(title='Gender')
ax.set_title('Gender Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 10/48

4.1.b.2 Age Distribution

Continuing with our analysis, we will now examine how our company is composed by ages.
To do this, we will use the values in the column 'AgeRange'. We will be able to know the
composition of our company according to the age ranges. This analysis is useful to know if
we have several employees near retirement.

In []: age_range_count = df_padb['AgeRange'].value_counts()
print(age_range_count)

total_age_count = age_range_count.sum()
age_percentage = (age_range_count / total_age_count) * 100

labels = [f'{age} ({count})' for age, count in zip(age_range_count.index, age_range

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 11/48

28 to 37 638
38 to 47 406
18 to 27 210
48 to 57 187
more than 58 29
Name: AgeRange, dtype: int64

fig, ax = plt.subplots(figsize=(9, 12))

plt.pie(age_range_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Age Range', loc= 'upper left')
ax.set_title('Age Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 12/48

4.1.b.3 More Distributions

What level of training and education do our employees have? I would like to know if workers
need assistance in improving their academic achievement. For this task, the columns
"Education" and "EducationField" will be used by me.

4.1.b.3.a Education Distribution

Bachelor 572
Master 398
College 282
Below College 170
Doctor 48
Name: Education, dtype: int64

In []: education_count = df_padb['Education'].value_counts()
print(education_count)

total_education_count = education_count.sum()
education_percentage = (education_count / total_education_count) * 100

labels = [f'{education} ({count})' for education, count in zip(education_count.inde

fig, ax = plt.subplots(figsize=(9, 12))

plt.pie(education_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Education', loc= 'upper left')
ax.set_title('Education Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 13/48

4.1.b.3.b Field Education Distribution

The objective of the subsequent analysis is to determine how people are distributed
according to the different educational qualifications they have.

In []: educationfield_count = df_padb['EducationField'].value_counts()
print(educationfield_count)

total_educationfield_count = educationfield_count.sum()
educationfield_percentage = (educationfield_count / total_educationfield_count) * 1

labels = [f'{education} ({count})' for education, count in zip(educationfield_count

fig, ax = plt.subplots(figsize=(9, 12))

plt.pie(educationfield_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Education Fields', loc= 'upper left')
ax.set_title('Education Field Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 14/48

Life Sciences 606
Medical 464
Marketing 159
Technical Degree 132
Other 82
Human Resources 27
Name: EducationField, dtype: int64

4.1.c Appendix

I compute certain numbers in this appendix for use in upcoming analyses. Recall that in the
future, we want to compare and understand how diversity evolves throughout time.

In []: # Calculate the employees average age
age_info = df_padb['Age'].describe()
print(age_info)

age_sum = df_padb['Age'].mean().round(0)
print("\nThe average Age is:")
print(age_sum)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 15/48

count 1470.000000
mean 36.923810
std 9.135373
min 18.000000
25% 30.000000
50% 36.000000
75% 43.000000
max 60.000000
Name: Age, dtype: float64

The average Age is:
37.0

4.2 JOB SATISFACTION

Let's examine employee's satisfaction levels across the company's different roles. Which role
has the greatest or lowest degree of contentment? With this metric, we can identify those
roles where satisfaction is low, discover what is causing the low levels, and design or create
strategies to improve it.

I'll start by tallying the distribution of the satisfaction categories.

Very High 459
High 442
Low 289
Medium 280
Name: JobSatisfaction, dtype: int64

In []: # Count the satisfaction categories.
job_satisfaction_count = df_padb['JobSatisfaction'].value_counts()
print(job_satisfaction_count)

job_satisfaction_total = df_padb['JobSatisfaction'].sum()

labels = [f'{jobsatisfaction} ({count})' for jobsatisfaction, count in zip(job_sati

fig, ax = plt.subplots(figsize=(8, 10))

plt.pie(job_satisfaction_count, labels=labels, autopct='%1.1f%%', pctdistance=0.85)
plt.legend(title='Satisfaction Levels', loc= 'upper left')
ax.set_title('Satisfaction Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
draw circle
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()

Adding Circle in Pie chart
fig.gca().add_artist(centre_circle)
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 16/48

The data shows that 19,7% of the employees have Low satisfaction with their job. I will
identify which of the roles are not so satisfied with their job

In []: # With a pivot table, I will identify the responses for each department about their
pivot = pd.pivot_table(df_padb[['Department', 'JobSatisfaction']], index='Departmen
print("Pivot Table with Counts:")
print(pivot)

Let's calculate the percentage of satisfaction for each department and their cate
pivot_percentage = pivot.div(pivot.sum(axis=1), axis=0).round(2) * 100

Define the desired order of values
desired_order = ['Low', 'Medium', 'High', 'Very High']

Reindex the DataFrame to specify the desired order
pivot_percentage_ordered = pivot_percentage.reindex(desired_order, axis=1)

print("\nPivot Table with Percentages:")
print(pivot_percentage)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 17/48

Pivot Table with Counts:
JobSatisfaction High Low Medium Very High
Department
Human Resources 15 11 20 17
Research & Development 300 192 174 295
Sales 127 86 86 147

Pivot Table with Percentages:
JobSatisfaction High Low Medium Very High
Department
Human Resources 24.0 17.0 32.0 27.0
Research & Development 31.0 20.0 18.0 31.0
Sales 28.0 19.0 19.0 33.0

Let's create a chart to visualize our data.

Previously, looking at the overall percentage among departments, we found that 19.7% of all
employees have a low motivation with their work.

In []: # Creating the chart to visualize our data
ax = pivot_percentage_ordered.plot(kind='bar', stacked=True, figsize=(10, 8), width

Adding the values to the bars
for container in ax.containers:
 ax.bar_label(container, label_type='center', fontsize=10)

plt.title('Job Satisfaction by Department', fontsize=18, fontweight='bold')
plt.xlabel('Department')
plt.ylabel('Percentage')
plt.xticks(rotation=45)
plt.legend(title='Job Satisfaction', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 18/48

In order to have a more detailed report, I proceeded to break down by department in order
to know more deeply the dissatisfaction with the work. We have to keep in mind that out of
1470 employees, 63 belong to the HRD department, 961 to the Research and Development
department and 446 to Sales. The percentages of dissatisfaction between the three
departments were very similar. RRHH presented a 17% about 11 employees, R&D a total of
20% about 192 employees and Sales total of 19% about 86 employees.

We can indicate that in the R&D department we have the largest number of employees who
are dissatisfied or low motivated with their work. It is recommended to investigate what is
causing this and find some solutions.

I would like to make an assessment: in RRHH there are 17% of employees with low motivation
and 32% with medium motivation. It is recommended to follow up to see if these indices are
rising because we would have most half of the department with a low motivation with their
tasks. While the other two departments showed high rates of average and high satisfaction
with their work.

4.2.a Appendix

In order to further my investigation, I choose to find out how many of them are "Very High"
invested in their work and what proportion of them have "Low" motivation. I will identify
the employees who exhibit "Low" motivation by utilizing the 'JobInvolvement' column.
Those with "High" participation and "Low" satisfaction will also be examined by me.

The total number of employees with Very High Job Involvement and Low Job Satisfact
ion is: 34
The total number of employees with High Job Involvement and Low Job Satisfaction i
s: 166
The employees with Very High Job Involvement and Low Job Satisfaction represents a
percentage of: 2.31
The employees with High Job Involvement and Low Job Satisfaction represents a perc
entage of: 11.29

4.3 CAREER PROGRESSION

Is there decent career growth at the company? Through data analysis, my goal is to ascertain
whether the organization provides its employees with a decent opportunity for professional

In []: # Create a copy of the columns to work better with them
job_db = df_padb[['JobInvolvement', 'JobSatisfaction']].copy()

Filtering the data
jobFilteredData_VHL = job_db[(job_db['JobInvolvement'] == 'Very High') & (job_db['J
jobFilteredData_HL = job_db[(job_db['JobInvolvement'] == 'High') & (job_db['JobSati

Counting the filtered data.
countVH_Low = jobFilteredData_VHL.shape[0]
countH_Low = jobFilteredData_HL.shape[0]
print("The total number of employees with Very High Job Involvement and Low Job Sat
print("The total number of employees with High Job Involvement and Low Job Satisfac

Percentage they represent
percentageVH_Low = countVH_Low / len(df_padb) * 100
percentageH_Low = countH_Low / len(df_padb) * 100
print('The employees with Very High Job Involvement and Low Job Satisfaction repres
print('The employees with High Job Involvement and Low Job Satisfaction represents

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 19/48

advancement. Can this be related to low work satisfaction?. I will use for the analysis the
data from the column 'YearsAtCompany'.

1470

By department there are the following number of employees:
 Research & Development 961
Sales 446
Human Resources 63
Name: Department, dtype: int64

Let's examine how many years the employee's stay in the same role in their departments.

In []: df_total_records = len(df_padb)
print(df_total_records)

In []: departments_count = df_padb['Department'].value_counts()
print('By department there are the following number of employees: ', "\n", departme
Preparing the data
sales_count = df_padb[df_padb['Department'] == 'Sales'].groupby('YearsAtCompany').s
rrhh_count = df_padb[df_padb['Department'] == 'Human Resources'].groupby('YearsAtCo
rd_count = df_padb[df_padb['Department'] == 'Research & Development'].groupby('Year

Creating the line plot
plt.figure(figsize=(8, 4))

Ploting the lines
plt.plot(sales_count.index, sales_count.values, label='Sales', marker='o', ms = 3)
plt.plot(rrhh_count.index, rrhh_count.values, label='Human Resources', marker='o',
plt.plot(rd_count.index, rd_count.values, label='Research & Development', marker='o

Adding Labels
plt.xlabel('Years at the Company')
plt.ylabel('Employee Count')
plt.title('Years at the Company by Department', fontsize=18, fontweight='bold')
plt.legend(title='Departments', bbox_to_anchor=(1, 1), loc='upper left')
plt.show()

In []: # Preparing the data
sales_count_cr = df_padb[df_padb['Department'] == 'Sales'].groupby('YearsInCurrentR
rrhh_count_cr = df_padb[df_padb['Department'] == 'Human Resources'].groupby('YearsI
rd_count_cr = df_padb[df_padb['Department'] == 'Research & Development'].groupby('Y

Creating the line plot
plt.figure(figsize=(8, 4))

Ploting the lines

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 20/48

Average years at the Company: 7.0
 Average years at a Role: 4.0
 Average Years since last Promotion: 2.0
 Max Years in a Role: 18

Most employees are between 0 and 10 years working for the company. And we can see that it
decreases significantly after ten years. So I tried to figure out how long the average employee
stays in the company and found out that it's 7 years, with 4 years on average working in the
same position. Then I decided to investigate the company's promotion system and found out
that our company has an average of two years to grant promotions.

A first promotion can be seen around 2 years after joining the company, and then a second
promotion can be seen 5 years later. Then there may be a change of business, or the person
may continue to work in the position until his retirement.

For more information, the maximum number of years in a single role was examined. It was
found that the longest duration in a position is 18 years.

4.4 COMPENSATION ANALYSIS

plt.plot(sales_count_cr.index, sales_count_cr.values, label='Sales', marker='o', ms
plt.plot(rrhh_count_cr.index, rrhh_count_cr.values, label='Human Resources', marker
plt.plot(rd_count_cr.index, rd_count_cr.values, label='Research & Development', mar

Adding Labels
plt.xlabel('Years')
plt.ylabel("Employee's per Department")
plt.title('Years at current Role by Department', fontsize=18, fontweight='bold')
plt.legend(title='Departments', bbox_to_anchor=(1, 1), loc='upper left')
plt.show()

In []: average_years = df_padb['YearsAtCompany'].mean().round()
average_years_at_role = df_padb['YearsInCurrentRole'].mean().round()
average_years_promotion = df_padb['YearsSinceLastPromotion'].mean().round()
max_years_in_role = df_padb['YearsInCurrentRole'].max()

print(
 "Average years at the Company: ", average_years, "\n",
 "Average years at a Role: ", average_years_at_role, "\n",
 "Average Years since last Promotion: ", average_years_promotion, "\n",
 "Max Years in a Role: ", max_years_in_role)
print(max_years_in_role)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 21/48

It's time to analyze whether there is a significant disparity between employee salaries and
educational attainment. 'MonthlyIncome' values will be used, and the values will be
distributed according to the values in the 'Education' column.

MonthlyIncome Education

0 5993 College

1 5130 Below College

2 2090 College

3 2909 Master

4 3468 Below College

It's time to work with our new data frame. Let us calculate the median for every category of
education.

The median for Below College Education is: [[3849.]]
 The median for College Education is: [[4891.5]]
 The median for Bachelor Education is: [[4762.]]
 The median for Master Education is: [[5341.5]]
 The median for Doctor Education is: [[6203.]]
 The median for the "MonthlyIncome" column is: 4919.0

To see our data, let's make some charts. I will use a Bar chart to compare the monthly
income median of each education level.

In []: # To facilitate our work, I will create a table with the required columns 'MonthlyI
df_monthedu = df_padb[['MonthlyIncome', 'Education']].copy()
df_monthedu.head()

Out[]:

In []: # First, let's calculate the median from the 'MonthlyIncome' column.
monthlyIncome_median = df_monthedu['MonthlyIncome'].median()

Second, let's calculate the median for each category of education
below_college_median = df_monthedu[df_monthedu['Education'] == 'Below College'].gro
college_median = df_monthedu[df_monthedu['Education'] == 'College'].groupby('Educat
bachelor_median= df_monthedu[df_monthedu['Education'] == 'Bachelor'].groupby('Educa
master_median = df_monthedu[df_monthedu['Education'] == 'Master'].groupby('Educatio
doctor_median = df_monthedu[df_monthedu['Education'] == 'Doctor'].groupby('Educatio
print(
 "The median for Below College Education is: ", below_college_median.values, "\n
 "The median for College Education is: ", college_median.values, "\n",
 "The median for Bachelor Education is: ", bachelor_median.values, "\n",
 "The median for Master Education is: ", master_median.values, "\n",
 "The median for Doctor Education is: ", doctor_median.values, "\n",
 'The median for the "MonthlyIncome" column is: ', monthlyIncome_median)

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
bar_data = [below_college_median['MonthlyIncome'].values[0],
 college_median['MonthlyIncome'].values[0],
 bachelor_median['MonthlyIncome'].values[0],
 master_median['MonthlyIncome'].values[0],
 doctor_median['MonthlyIncome'].values[0]]
education_cat = ['Below College', 'College', 'Bachelor', 'Master', 'Doctor']

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 22/48

Employees with a Bachelor's degree have less income than those with a College degree,
according to the findings when viewed using the median. But keep in mind that we have
more employees with Bachelor's degrees than the college does, so I'll check to see if the
mean exhibits the same abnormality.

Adding the labels
for i, value in enumerate(bar_data):
 plt.text(i, value, str(value), ha='center', va='top', color='white')

Add the average line
plt.axhline(monthlyIncome_median, color='blue', linestyle='--', label='Media')

Add the value of the average to the line
plt.text(len(education_cat) + 0.6, monthlyIncome_median, f'Median: {monthlyIncome_m

Joining the data to create the chart
plt.bar(education_cat, bar_data)
plt.xlabel('Education Level')
plt.ylabel('Monthly Income')
plt.title('Median Monthly Income by Education Level', fontsize=18, fontweight='bold
plt.show()

In []: # First, let's calculate the mean from the 'MonthlyIncome' column.
monthlyIncome_mean = df_monthedu['MonthlyIncome'].mean().round(2)

Second, let's calculate the mean for each category of education
below_college_mean = df_monthedu[df_monthedu['Education'] == 'Below College'].group
college_mean = df_monthedu[df_monthedu['Education'] == 'College'].groupby('Educatio
bachelor_mean= df_monthedu[df_monthedu['Education'] == 'Bachelor'].groupby('Educati
master_mean = df_monthedu[df_monthedu['Education'] == 'Master'].groupby('Education'
doctor_mean = df_monthedu[df_monthedu['Education'] == 'Doctor'].groupby('Education'
print(
 "The mean for Below College Education is: ", below_college_mean.values, "\n",
 "The mean for College Education is: ", college_mean.values, "\n",
 "The mean for Bachelor Education is: ", bachelor_mean.values, "\n",

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 23/48

The mean for Below College Education is: [[5640.57]]
 The mean for College Education is: [[6226.65]]
 The mean for Bachelor Education is: [[6517.26]]
 The mean for Master Education is: [[6832.4]]
 The mean for Doctor Education is: [[8277.65]]
 The mean for the "MonthlyIncome" column is: 6502.93

I can establish that employees with a Bachelor's degree have more income than those with a
College degree by looking at the mean. By the time, there is no problem with the salaries,
but it's crucial to note that certain Bacherlor employees are not getting paid enough. The
mean for the Bachelor's degree is 6517,26 against the 6226,65 from the College degree.

 "The mean for Master Education is: ", master_mean.values, "\n",
 "The mean for Doctor Education is: ", doctor_mean.values, "\n",
 'The mean for the "MonthlyIncome" column is: ', monthlyIncome_mean)

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
bar_mean_data = [below_college_mean['MonthlyIncome'].values[0],
 college_mean['MonthlyIncome'].values[0],
 bachelor_mean['MonthlyIncome'].values[0],
 master_mean['MonthlyIncome'].values[0],
 doctor_mean['MonthlyIncome'].values[0]]
education_cat = ['Below College', 'College', 'Bachelor', 'Master', 'Doctor']

Adding the labels
for i, value in enumerate(bar_mean_data):
 plt.text(i, value, str(value), ha='center', va='bottom', color='red')

Add the average line
plt.axhline(monthlyIncome_mean, color='blue', linestyle='--', label='Media')

Add the value of the average to the line
plt.text(len(education_cat) + 0.8, monthlyIncome_mean, f'Average: {monthlyIncome_me

Joining the data to create the chart
plt.bar(education_cat, bar_mean_data)
plt.xlabel('Education Level')
plt.ylabel('Monthly Income')
plt.title('Average Monthly Income by Education Level', fontsize=18, fontweight='bol
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 24/48

4.4 TRAINING AND DEVELOPMENT

Continuing with our descriptive analysis, I will explore the years the company has committed
to providing training to their employees in each department. I will make an effort to identify
potential areas to improve the training and which departments could benefit more.

Department TrainingTimesLastYear

0 Sales 0

1 Research & Development 3

2 Research & Development 3

3 Research & Development 3

4 Research & Development 3

In []: # To facilitate our work, I will create a table with the required columns 'MonthlyI
df_timesTraining = df_padb[['Department', 'TrainingTimesLastYear']].copy()
df_timesTraining.head()

Out[]:

In []: timesTraining_average = df_timesTraining['TrainingTimesLastYear'].mean().round(2)

Second, let's calculate the average times commited in training for each departmen
sales_training_average = df_timesTraining[df_timesTraining['Department'] == 'Sales'
rrhh_training_average = df_timesTraining[df_timesTraining['Department'] == 'Human R
rd_training_average= df_timesTraining[df_timesTraining['Department'] == 'Research &

print(
 "The average training time dedicated in Sales is: ", sales_training_average.val
 "The average training time dedicated in Human Resources is: ", rrhh_training_av
 "The average training time dedicated in Research & Development is: ", rd_traini
 'The average times for the "TrainingTimeLastYear" column is: ', timesTraining_a

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 25/48

The average training time dedicated in Sales is: [[2.85]]
 The average training time dedicated in Human Resources is: [[2.56]]
 The average training time dedicated in Research & Development is: [[2.79]]
 The average times for the "TrainingTimeLastYear" column is: 2.8

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
bar_training_data = [sales_training_average['TrainingTimesLastYear'].values[0],
 rrhh_training_average['TrainingTimesLastYear'].values[0],
 rd_training_average['TrainingTimesLastYear'].values[0]
]
department_cat = ['Sales', 'Human Resources', 'Research & Development']

Adding the labels
for i, value in enumerate(bar_training_data):
 plt.text(i, value, str(value), ha='center', va='bottom', color='red')

Add the average line
plt.axhline(timesTraining_average, color='blue', linestyle='--', label='Average Tra

Add the value of the average to the line
plt.text(len(department_cat), timesTraining_average, f'Average: {timesTraining_aver

Adjust y-axis limits to ensure the line is visible
plt.ylim(0, max(bar_training_data) + 2)

Joining the data to create the chart
plt.bar(department_cat, bar_training_data)
plt.xlabel('Department')
plt.ylabel('Average Training Time')
plt.title('Average Training Times Dedicated by Department', fontsize=18, fontweight
plt.show()

In []: # Second, let's calculate the average years commited in training for each departmen
sales_training_sum = df_timesTraining[df_timesTraining['Department'] == 'Sales'].gr

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 26/48

The total training time dedicated in Sales is: [[1270]]
 The total training time dedicated in Human Resources is: [[161]]
 The total training time dedicated in Research & Development is: [[2684]]
 The total years for the "TrainingTimeLastYear" column is: 2.8

rrhh_training_sum = df_timesTraining[df_timesTraining['Department'] == 'Human Resou
rd_training_sum= df_timesTraining[df_timesTraining['Department'] == 'Research & Dev

print(
 "The total training time dedicated in Sales is: ", sales_training_sum.values, "
 "The total training time dedicated in Human Resources is: ", rrhh_training_sum.
 "The total training time dedicated in Research & Development is: ", rd_training
 'The total years for the "TrainingTimeLastYear" column is: ', timesTraining_ave

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
bar_training_data = [sales_training_sum['TrainingTimesLastYear'].values[0],
 rrhh_training_sum['TrainingTimesLastYear'].values[0],
 rd_training_sum['TrainingTimesLastYear'].values[0]
]
department_cat = ['Sales', 'Human Resources', 'Research & Development']

Adding the labels
for i, value in enumerate(bar_training_data):
 plt.text(i, value, str(value), ha='center', va='bottom', color='red')

Joining the data to create the chart
plt.bar(department_cat, bar_training_data)
plt.xlabel('Department')
plt.ylabel('Training Times')
plt.title('Total Training Times Dedicated by Department', fontsize=18, fontweight='
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 27/48

4.5 WORK-LIFE BALANCE AND OVERTIME ANALYSIS

These days, evaluating the workers' work-life balance is among the most crucial
evaluations. Let's investigate if they are working too much and whether they are able to
make up for their job hours with their free time. Recall that most workers value a healthy
work-life balance, particularly in light of the growing popularity of remote employment.

OverTime JobSatisfaction WorkLifeBalance DistanceFromHome

0 Yes Very High Bad 1

1 No Medium Better 8

2 Yes High Better 2

3 Yes High Better 3

4 No Medium Better 2

No 1054
Yes 416
Name: OverTime, dtype: int64

In []: df_wlb = df_padb[['OverTime', 'JobSatisfaction', 'WorkLifeBalance', 'DistanceFromHo
df_wlb.head()

Out[]:

In []: # Let's analyze the data from the OverTime column
overtime_count = df_wlb['OverTime'].value_counts()
print(overtime_count)

Total and percentage variables to use on our charts
total_overtime_count = overtime_count.sum()
overtime_percentage = (overtime_count / total_count) * 100

labels = gender_counts.index
Using a function to create the labels
labels = [f'{overtime} ({count})' for overtime, count in zip(overtime_count.index,

Chart size
fig, ax = plt.subplots(figsize=(8, 10))

Chart generation
plt.pie(overtime_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Overtime Count')
ax.set_title('Overtime Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 28/48

A review of the 'OverTime' column data reveals that just 28.3% of our staff members work
overtime. It is not possible to ascertain how an employee's work-life balance is impacted by
overtime. In order to obtain a useful result, I thus choose to look at the numbers in the
"WorkLifeBalance" column.

In []: # Let's analyze the data from the OverTime column
wlbalance_count = df_wlb['WorkLifeBalance'].value_counts()
print(wlbalance_count)

Total and percentage variables to use on our charts
total_wlbalance_count = wlbalance_count.sum()
wlbalance_percentage = (wlbalance_count / total_count) * 100

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 29/48

Better 893
Good 344
Best 153
Bad 80
Name: WorkLifeBalance, dtype: int64

labels = gender_counts.index
Using a function to create the labels
labels = [f'{wlbalance} ({count})' for wlbalance, count in zip(wlbalance_count.inde

Chart size
fig, ax = plt.subplots(figsize=(8, 10))

Chart generation
plt.pie(wlbalance_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Work-Life Balance')
ax.set_title('Work-Life Distribution', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 30/48

More pertinent information about our employees' appreciation of work-life balance was
found in the 'WorkLifeBalance' column. According to my research, 5.4% of workers think
that there is not a good work-life balance. I'm now attempting to determine whether there is
another factor influencing them. Let's narrow down the data to just see those whose "Job
Satisfaction" and "WorkLifeBalance" are both "Low". Also I will explore if they work
'OverTime'

The total number of employees with Low Job Satisfaction, Bad Work-Life Balance and
Over time Yes, is: 2
The total number of employees with Good Job Satisfaction, Bad Work-Life Balance an
d Over time Yes is: 17

count 1470.000000
mean 9.192517
std 8.106864
min 1.000000
25% 2.000000
50% 7.000000
75% 14.000000
max 29.000000
Name: DistanceFromHome, dtype: float64

I discovered after analyzing the data that employees are satisfied with the work-life balance
the organization provides. Emphasizing and attempting to implement a policy to lower the
28.3% of workers over time is crucial. Additionally, I discovered that very few workers truly
struggle with work-life balance, thus attending this employee disconfirmation is advised.

4.6 ATTRITION ANALYSIS

Now it's time to attend to one of the most important metrics for our company: the attrition
rate of the company during 2021. Knowing the rate of turnover in our organization will help
us know if we are losing underperforming employees or the good ones. Maybe a high rate of
turnover means that we are losing low-performing employees; this metric will help us retain
good talent.

In []: # Filtering the data
wlb_JsWlb_low = df_wlb[(df_wlb['WorkLifeBalance'] == 'Bad') & (df_wlb['JobSatisfact
wlb_JsWlb_good = df_wlb[(df_wlb['WorkLifeBalance'] == 'Good') & (df_wlb['JobSatisfa

Counting the filtered data.
countWlbJs_low = wlb_JsWlb_low.shape[0]
countWlbJs_good = wlb_JsWlb_good.shape[0]
print("The total number of employees with Low Job Satisfaction, Bad Work-Life Balan
print("The total number of employees with Good Job Satisfaction, Bad Work-Life Bala

In []: df_wlb['DistanceFromHome'].describe()

Out[]:

In []: # Creating a data frame to make it easier to work with the data
df_attrition = df_padb[['Attrition', 'EnvironmentSatisfaction', 'JobInvolvement', '
df_attrition.head()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 31/48

Attrition EnvironmentSatisfaction JobInvolvement JobSatisfaction MonthlyIncome OverTime

0 Yes Medium High Very High 5993 Yes

1 No High Medium Medium 5130 No

2 Yes Very High Medium High 2090 Yes

3 No Very High High High 2909 Yes

4 No Low High Medium 3468 No

With the new data frame, now we can calculate the attrition rate of our company

The attrition count is:
 No 1233
Yes 237
Name: Attrition, dtype: int64
The attrition percentage is:
 No 83.9
Yes 16.1
Name: Attrition, dtype: float64

Out[]:

In []: # Let's analyze the data from the OverTime column
attrition_count = df_attrition['Attrition'].value_counts()
print('The attrition count is: ', '\n', attrition_count)

Total and percentage variables to use on our charts
total_attrition_count = attrition_count.sum()
attrition_percentage = (attrition_count / total_count) * 100
print('The attrition percentage is: ', '\n', round(attrition_percentage, 1))

labels = gender_counts.index
Using a function to create the labels
labels = [f'{attrition} ({count})' for attrition, count in zip(attrition_count.inde

Chart size
fig, ax = plt.subplots(figsize=(8, 10))

Chart generation
plt.pie(attrition_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Attrition Count')
ax.set_title('2021 Attrition Rate', fontsize=18, fontweight='bold')
plt.axis('equal')
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 32/48

With a 16.1% attrition rate in 2021, 237 employees departed the organization in total. Let's
attempt to ascertain whether they were driven by any particular reason or whether a change
was all they desired.

In []: # Filtering the data
attrition_worstvalues = df_attrition[(df_attrition['EnvironmentSatisfaction'] == 'L
attrition_mediumvalues = df_attrition[(df_attrition['EnvironmentSatisfaction'] == '

Counting the filtered data.
count_attrition_wv = attrition_worstvalues.shape[0]
count_attrition_mv = attrition_mediumvalues.shape[0]
print("The number of employees who leave the company with Job Satisfaction and Envi
print("The number of employees who leave the company, with Job Satisfaction 'Low' a

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 33/48

The number of employees who leave the company with Job Satisfaction and Environmen
t Satisfaction 'Low', and working Over time is: 15
The number of employees who leave the company, with Job Satisfaction 'Low' and Env
ironment Satisfaction 'Medium', and working Over time is: 16

Let's find out if the employee's choice to quit the firm was influenced by their monthly
income.

6502.93
The number of employees who left and were over the mean is: 52
The number of employees who left and were under the mean is: 185

In []: # Calculating the monthly income mean
attrition_mincome_mean = df_attrition['MonthlyIncome'].mean().round(2)
print(attrition_mincome_mean)

Filtering the attrition data by those who are under or over the mean monthly inco
attrition_over_mean_mi = df_attrition[(df_attrition['MonthlyIncome'] > attrition_mi
attrition_under_mean_mi = df_attrition[(df_attrition['MonthlyIncome'] < attrition_m

count_attrition_over_mean = attrition_over_mean_mi.shape[0]
count_attrition_under_mean = attrition_under_mean_mi.shape[0]

print('The number of employees who left and were over the mean is: ', count_attriti
print('The number of employees who left and were under the mean is: ', count_attrit

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
attrition_data = [count_attrition_over_mean, count_attrition_under_mean]
attrition_cat = ['Above', 'Below']

Adding the labels
for i, value in enumerate(attrition_data):
 plt.text(i, value, str(value), ha='center', va='bottom', color='red')

Joining the data to create the chart
plt.bar(attrition_cat, attrition_data, color=['blue', 'orange'])
plt.xlabel('Categories')
plt.ylabel('Employees count')
plt.title('Over-and-Under-Average Withdrawal Count', fontsize=18, fontweight='bold'
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 34/48

After the analysis the data shows us that 52 of the 237 employees who left the firm had
monthly incomes that were above average, while 185 of the employees who left had their
incomes below average.

Let's examine the distribution of attrition by Gender and Age Range.

Number of females that had resigned from the company:
 87
Number of males that had resigned from the company:
 150

In []: # Let's start examining by the gender
attrition_female = df_attrition[(df_attrition['Gender'] == 'Female') & (df_attritio
attrition_male = df_attrition[(df_attrition['Gender'] == 'Male') & (df_attrition['A

Counting the distribution of attrition by gender
count_attrition_female = attrition_female.shape[0]
count_attrition_male = attrition_male.shape[0]

print('Number of females that had resigned from the company: ', '\n', count_attriti
print('Number of males that had resigned from the company: ', '\n', count_attrition

In []: # Let's create the Bar chart
plt.figure(figsize = (8, 6))

Adding the variables
gender_attrition_data = [count_attrition_female, count_attrition_male]
attrition_gender_cat = ['Female', 'Male']

Adding the labels
for i, value in enumerate(gender_attrition_data):

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 35/48

 plt.text(i, value, str(value), ha='center', va='bottom', color='red')

Joining the data to create the chart
plt.bar(attrition_gender_cat, gender_attrition_data, color=['blue', 'orange'])
plt.xlabel('Gender')
plt.ylabel('Employees count')
plt.title('Attrition Distribution by Gender', fontsize=18, fontweight='bold')
plt.show()

In []: # Filtering the Attrition by the value 'Yes'
age_range_attrition_filter = df_attrition[(df_attrition['Attrition'] == 'Yes')]

colors = ['skyblue', 'salmon', 'lightgreen', 'orange', 'lightblue']

Group the values by the 'AgeRange'
attrition_by_age = age_range_attrition_filter.groupby('AgeRange').size()

Create bar chart
ax = attrition_by_age.plot(kind='bar', color=colors)

Explicitly specify x-axis tick locations and labels
ax.set_xticks(range(len(attrition_by_age)))
ax.set_xticklabels(attrition_by_age.index, rotation=45, ha='right')

Add values to the bars
for i, v in enumerate(attrition_by_age):
 ax.text(i, v + 0.1, str(v), ha='center', va='bottom')

Add labels and title
plt.xlabel('Age Range')
plt.ylabel('Attrition Count')
plt.title('Attrition Count by Age Range', fontsize=18, fontweight='bold')

Show plot

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 36/48

When I break down the resignations by age range, I find that the age range of 18 to 47 years
old is where the firm is losing the most employees, with 210 departing. The age range of 28
to 37 years old is where the company records the highest number of resignations.

From what I see with the age range, let's investigate if, from those resignations, the company
is losing good talent. I will analyze attrition based on the employee's education level.

plt.tight_layout()
plt.show()

In []: # Filtering the Attrition by the value 'Yes'
education_attrition_filter = df_attrition[(df_attrition['Attrition'] == 'Yes')]

colors = ['skyblue', 'salmon', 'lightgreen', 'orange', 'lightblue']

Group the values by the 'AgeRange'
attrition_by_education = education_attrition_filter.groupby('Education').size()

Define the desired order of education levels
desired_order = ['Below College', 'College', 'Bachelor', 'Master', 'Doctor']

Reindex the Series according to the desired order
attrition_by_education = attrition_by_education.reindex(desired_order)

Create bar chart
ax = attrition_by_education.plot(kind='bar', color=colors)

Explicitly specify x-axis tick locations and labels
ax.set_xticks(range(len(attrition_by_age)))
ax.set_xticklabels(attrition_by_education.index, rotation=45, ha='right')

Add values to the bars
for i, v in enumerate(attrition_by_education):
 ax.text(i, v + 0.1, str(v), ha='center', va='bottom')

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 37/48

When I break down the resignations by educational level, I find that employees with degrees
of "Bachelor" and "Master", followed by "College", are the most likely to quit, registering a
total of 201 resignations. This information raises the possibility that the organization is losing
talent as a result of the resignations.

4.7 MACHINE LEARNING MODELS

Let's attempt to create some Machine Learning Models using the company's data.

Remember that for this kind of analysis, we need to use Numpy.

4.7.a Correlation between Salary and Experience - Linear Regression

I'll use the data from the columns "MonthlyIncome" and "TotalWorkingYears" for this study.
The Linear Regression Model will be my tool. I would want to know if the pay is
commensurate with years of experience.

I will use two types of calculations, one using Numpy and the other from StatsModels, which
include information such as coefficients, standard errors, t-values, p-values, and R-squared,

Add labels and title
plt.xlabel('Age Range')
plt.ylabel('Attrition Count')
plt.title('Attrition Count by Age Range', fontsize=18, fontweight='bold')

Show plot
plt.tight_layout()
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 38/48

which are crucial for interpreting the results of the linear regression model. To visualize the
data, I will use a scatter plot

MonthlyIncome TotalWorkingYears

count 1470.000000 1470.000000

mean 6502.931293 11.279592

std 4707.956783 7.780782

min 1009.000000 0.000000

25% 2911.000000 6.000000

50% 4919.000000 10.000000

75% 8379.000000 15.000000

max 19999.000000 40.000000

4.7.a.1 Linear Regression - Numpy

[[1. 0.77289325]
 [0.77289325 1.]]

In []: # Creating our data frame
df_salary = df_padb[['MonthlyIncome', 'TotalWorkingYears']].copy()
df_salary.describe()

Out[]:

In []: # Defining the data for the x-axis and y-axis
x = df_salary['TotalWorkingYears'];
y = df_salary['MonthlyIncome'];

Creating the plot
plt.scatter(x = x, y = y, color='#9467bd')

#obtain m (slope) and b(intercept) of linear regression line
m, b = np.polyfit(x, y, 1)
lreg = np.corrcoef(x, y)
Ploting the linear regression line
plt.plot(x, m*x+b, color='red')

Adding labels and title
plt.xlabel('Experience')
plt.ylabel('Monthly Income')
plt.title('Correlation between Monthly Income and Experience', fontsize=18, fontwei
plt.legend(['Observed Data', 'Predicted Line'])

Printing the linear regression value
print(lreg)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 39/48

Our correlation coefficient is approximately 0.77 indicates a relatively strong positive linear
relationship between TotalWorkingYears and MonthlyIncome.

Some salaries need to be fixed to be closer to the regression line because the company
experiences a better correlation between salary and experience. The company will have
attractive salary options.

Note that we are not accounting for the company's provision of any further financial
incentives in this research.

I am going to import the statmodels library to work with the other Linear Regression
formula.

4.7.a.2 Linear Regression - Statsmodels

I am going to import the statmodels library to work with the other Linear Regression
formula.

In []: import statsmodels.formula.api as smf
model = smf.ols('MonthlyIncome ~ TotalWorkingYears', data = df_salary).fit()
model.summary()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 40/48

OLS Regression Results

Dep. Variable: MonthlyIncome R-squared: 0.597

Model: OLS Adj. R-squared: 0.597

Method: Least Squares F-statistic: 2178.

Date: Sat, 30 Mar 2024 Prob (F-statistic): 2.73e-292

Time: 00:02:04 Log-Likelihood: -13848.

No. Observations: 1470 AIC: 2.770e+04

Df Residuals: 1468 BIC: 2.771e+04

Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 1227.9353 137.299 8.944 0.000 958.612 1497.259

TotalWorkingYears 467.6584 10.021 46.669 0.000 448.002 487.315

Omnibus: 47.473 Durbin-Watson: 1.993

Prob(Omnibus): 0.000 Jarque-Bera (JB): 79.304

Skew: 0.269 Prob(JB): 6.02e-18

Kurtosis: 4.003 Cond. No. 24.2

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now I have the model that is performing a linear regression analysis to explore the
relationship between the TotalWorkingYears predictor variable and the MonthlyIncome.

Let's use the model to create some predictions.

0 4969.202583
1 5904.519406
2 4501.544171
3 4969.202583
4 4033.885759
 ...
1465 9178.128289
1466 5436.860994
1467 4033.885759
1468 9178.128289
1469 4033.885759
Length: 1470, dtype: float64

With the fitted linear regression model (model), we predict salaries based on years of
experience. The values are now stored in a variable called pred1.

Out[]:

In []: # Using our model to create predictions
Let's predict our salaries for each experience years and store them into a variab
pred1 = model.predict(pd.DataFrame(df_salary['TotalWorkingYears']))
print(pred1)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 41/48

Let's examine the model's appearance in a scatter plot.

The outcome of the prediction model is identical to the one we produced with Numpy.

Let's examine the error calculation.

2986.3521316844103

As a gauge of the linear regression model's prediction ability, I computed the root mean
squared error (RMSE). The model computes the residuals, squares them to get the mean
squared error (MSE), and then takes the square root to get the RMSE. A lower RMSE number
indicates greater performance, and it gives information about how well the model matches
the observed data. With a value of 2986.35, this is the average magnitude of the errors
between predicted values and actual values. The model is performing well in terms of
prediction.

In []: # Regression Line
X and Y were defined at the beginning, first the scatter then the line with the p
plt.scatter(x, y)
plt.plot(x, pred1, 'r')
Let's add a legend to our plot
plt.legend(['Observed Data', 'Predicted Line'])
plt.title('Regression Line')
plt.show()

In []: # Error Calculation
res1 = y - pred1
res_sqr1 = res1 * res1
mse1 = np.mean(res_sqr1)
rmse1 = np.sqrt(mse1)
print(rmse1)

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 42/48

4.7.a.3 Linear Regression - Log Transformation

Let's convert our data using logarithms.

After giving Salary a log transformation, we can see how Experience and Salary relate to one
another. The correlation coefficient between the two variables is now available, and a linear
regression model is provided to further examine the connection between Experience and the
salary logarithm.

It's recommended to compare the original data to see if the relationship is better
represented on a logarithmic scale. We can interpret the coefficients of the linear regression
model to understand the relationship between 'TotalWorkingYears' and the expected value
of 'MonthlyIncome' on the log scale.

In []: # Transformed data
Log Transformation
plt.scatter(x = x, y = np.log(y))
np.corrcoef(x, np.log(y))
model2 = smf.ols('np.log(MonthlyIncome) ~ TotalWorkingYears', data=df_salary).fit()
Adding the linear regression line
plt.plot(x, model2.predict(df_salary), color='red')

Labels and title
plt.xlabel('Total Working Years')
plt.ylabel('Log of Monthly Income')
plt.title('Linear Regression with Log Transformation')
plt.legend(['Observed Data', 'Prognosis Line'])

Show plot
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 43/48

4.7.a.4 Linear Regression - Comparation

Using a residual analysis, I will contrast the log-transformed data with the original data.

The plot shows us the residual values against the predicted values.

In []: # Calculate residuals
residuals = model.resid

Visualize residuals
plt.scatter(model.fittedvalues, residuals)
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.title('Residual Plot')
plt.legend(['Observed Data', 'Prognosis Line'])
plt.axhline(y=0, color='red', linestyle='--') # Add horizontal line at y=0
plt.show()

In []: # Original model summary
print(model.summary())

Log-transformed model summary (assuming you've already fit model2)
print(model2.summary())

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 44/48

 OLS Regression Results
==
Dep. Variable: MonthlyIncome R-squared: 0.597
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 2178.
Date: Sat, 30 Mar 2024 Prob (F-statistic): 2.73e-292
Time: 00:02:05 Log-Likelihood: -13848.
No. Observations: 1470 AIC: 2.770e+04
Df Residuals: 1468 BIC: 2.771e+04
Df Model: 1
Covariance Type: nonrobust
==
===
 coef std err t P>|t| [0.025 0.9
75]
--

Intercept 1227.9353 137.299 8.944 0.000 958.612 1497.
259
TotalWorkingYears 467.6584 10.021 46.669 0.000 448.002 487.
315
==
Omnibus: 47.473 Durbin-Watson: 1.993
Prob(Omnibus): 0.000 Jarque-Bera (JB): 79.304
Skew: 0.269 Prob(JB): 6.02e-18
Kurtosis: 4.003 Cond. No. 24.2
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly s
pecified.
 OLS Regression Results
===
Dep. Variable: np.log(MonthlyIncome) R-squared: 0.549
Model: OLS Adj. R-squared: 0.548
Method: Least Squares F-statistic: 1784.
Date: Sat, 30 Mar 2024 Prob (F-statistic): 9.04e-256
Time: 00:02:05 Log-Likelihood: -899.93
No. Observations: 1470 AIC: 1804.
Df Residuals: 1468 BIC: 1814.
Df Model: 1
Covariance Type: nonrobust
==
===
 coef std err t P>|t| [0.025 0.9
75]
--

Intercept 7.8391 0.021 382.037 0.000 7.799 7.
879
TotalWorkingYears 0.0632 0.001 42.232 0.000 0.060 0.
066
==
Omnibus: 10.743 Durbin-Watson: 1.981
Prob(Omnibus): 0.005 Jarque-Bera (JB): 10.779
Skew: -0.195 Prob(JB): 0.00456
Kurtosis: 2.845 Cond. No. 24.2
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly s
pecified.

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 45/48

There is more to study about the models, at the time, it is beyond my knowledge, but I am
interested in learning more about them.

4.7.b Attrition Prediction - Survival Model with Kaplan-Meier method

Having ascertained our company's attrition rate, let's investigate the possibility of developing
a machine learning model that anticipates resignation.

For this analysis I will use the values from the columns 'Attrition', 'YearsAtCompany' and
'AgeRange'.

YearsAtCompany Attrition AgeRange

0 6 Yes 38 to 47

1 10 No 48 to 57

2 0 Yes 28 to 37

3 8 No 28 to 37

4 2 No 18 to 27

To work with our model, I will encode the values from the 'Attrition' and 'AgeRange'
columns.

YearsAtCompany Attrition AgeRange_18
to 27

AgeRange_28
to 37

AgeRange_38
to 47

AgeRange_48
to 57

AgeRang

0 6 1 0 0 1 0

1 10 0 0 0 0 1

2 0 1 0 1 0 0

3 8 0 0 1 0 0

4 2 0 1 0 0 0

In []: # Create a data frame with the data we need
df_km_attrition = df_padb[['YearsAtCompany', 'Attrition', 'AgeRange']].copy()
df_km_attrition.head()

Out[]:

In []: # Attrition column
Encoding the data from Attrition
attrition_ref = {
 "Yes": 1,
 "No": 0
}
Encoding the values
df_km_attrition['Attrition'] = df_km_attrition['Attrition'].map(attrition_ref)

AgeRange Column
Encoding the data from AgeRange
encoded_age_range = pd.get_dummies(df_km_attrition['AgeRange'], prefix='AgeRange')
Now I concatenate the new encoded values on a new data frame
df_km_attencoded = pd.concat([df_km_attrition, encoded_age_range], axis=1)
df_km_attencoded.drop('AgeRange', axis='columns' , inplace=True)
df_km_attencoded.head()

Out[]:

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 46/48

Now is the time to compute the survival curves with the Kaplan-MeierFitter.

<Axes: title={'center': 'Kaplan-MeierFitter Model, Probability Renunciations'}, xl
abel='timeline'>

First impressions of the narrative lead us to believe that the first period of quitting the job
can happen during the first and second years of employment. We need to consider where
the plot takes big leaps. The second period of resignations is around 10 years at the
company. After that, a period of stability came, until the 25 years at the company when it
starts the retirement period.

To have a better idea, let's include the 'AgeRange' data.

Index(['YearsAtCompany', 'Attrition', 'AR18_27', 'AR28_37', 'AR38_47',
 'AR48_57', 'AR58'],
 dtype='object')

In []: # Importing the Kaplan-MeierFitter package for the survival analysis
from lifelines import KaplanMeierFitter

First we need to inicialize the Kaplan-MeierFitter model and we storage into a va
kmf = KaplanMeierFitter()

Let's fit the data into the kmf function
kmf.fit(df_km_attencoded['YearsAtCompany'], event_observed = df_km_attencoded['Attr
Checking the status of our curve
kmf.plot(title="Kaplan-MeierFitter Model, Probability Renunciations")

Out[]:

In []: # Rename the age columns
df_km_attencoded.rename(columns={"AgeRange_18 to 27": "AR18_27", "AgeRange_28 to 37
df_km_attencoded.columns

Out[]:

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 47/48

With the addition of the 'AgeRange' values, we now have 5 lines. Each of them shows
different information. For the range of 18 to 27, we can appreciate that the probability of
leaving the company is at the first year at the company, and then at about nine years. In the
range of 28 to 37, the probability of leaving the company is also at the first year, then ten
years later, and the last one comes when they are 16 or 17 years working fot he company. The
ranges 38 to 47 and 48 to 57 show more stability at the company. For the last range, more
than 58, we have three important breaks: the first year, then at ten years, and the last one at
31 years.

4.8 Conclusion and Observations

In []: # Plotting survival curves for each age range group
for age_range in ['AR18_27', 'AR28_37', 'AR38_47', 'AR48_57', 'AR58']:
 # Filter data for each age range group
 years_at_work = df_km_attencoded.loc[df_km_attencoded[age_range] == 1, 'YearsAt
 attrition = df_km_attencoded.loc[df_km_attencoded[age_range] == 1, 'Attrition']

 # Fit the Kaplan-Meier model for the current age range group
 kmf.fit(years_at_work, event_observed=attrition, label=age_range)

 # Plot the survival curve for the current age range group
 kmf.plot()

Add labels and title
plt.xlabel('Years at the Company')
plt.ylabel('Attrition Probability')
plt.legend(title='Age Range')
plt.title('Kaplan-Meier Survival Curves by Age Range', fontsize=18, fontweight='bol

Display the plot
plt.show()

30/3/24, 0:15 pe_analytics_eng

file:///C:/Users/imgal/OneDrive/Escritorio/pe_analytics_eng.html 48/48

After conducting an exploratory analysis of the database 'WA_Fn-UseC_-HR-Employee-
Attrition', I was able to establish that the organization has a "good balance" between the levels
of education, the gender and the age of the employees. From this point on, the organization
can decide on the diversity policies it deems necessary.

As for the levels of satisfaction, they are at acceptable levels, but it is recommended to pay
attention to the percentage of discomfort, and to take steps to reduce the percent and avoid
problems in the future, especially in jobs that are heavily engaged with their work.

Career plans may need adjustments, because, as can be seen from the redundancies, the
company is losing employees in lower age ranks. It could not be measured is the entry of new
employees to have a better picture of the entry and exit of employees.

The salaries showed to be consistent with the levels of the educational level of employees.

The hours devoted to the Training are equal for all departments and are within normal ranges.
Bear in mind that different departments have different numbers of employees and that all
have the same average hours devoted to training.

The company had a good work-family balance for its employees, and there were no significant
abnormalities in the work-family balance. It is recommended to continue with what is being
done.

With regard to the resignations, it was found that most of them could be related to salaries
below average. In addition, people from 18 to 47 showed the highest mobility. If we add the
level of education to the analysis, we can say that the company lost talent. However, it was not
possible to verify whether the company made revenue to compensate for them.

After the descriptive analysis, the next step will be to recreate the time to make a comparison
of the metrics.

