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HR - People Analytics Project

Solving HR Analytics and gathering information from the
data.

The data is from Kaggle:
User: PAVANSUBHASH
Title: IBM HR Analytics Employee Attrition & Performance

Link: https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

The purpose of the project is to practice my analytical skills with a real HR database, using
my knowledge in Python, Excel, and Power Bl. Machine learning techniques will be applied
where possible.

| will analyze the data to obtain valuable insights that allow actions to be taken related to
HR. Also, an attempt will be made to create a comparative of the metrics, by creating data to

simulate the passing years.

| will work with the file 'WA_Fn-UseC_-HR-Employee-Attrition', downloaded from the
Kaggle database.

Hypotheses will be raised, which must be confirmed or rejected by the data. The necessary
dashboards will then be created to visualize the results of the hypotheses raised. Finally, the

conclusions reached will be detailed.

1. Import libraries

import pandas as pd
import numpy as np

# This 1s to ignore warnings. Was a recommendation from my friend Manuel Angel Rodr
import warnings
warnings.filterwarnings('ignore")

2. Importing our data file

It's time to import our file 'WA_Fn-UseC_-HR-Employee-Attrition' to work with it. This is a
.csv file. First, | will explore the data, clean it, and remove those values that are not necessary
to our analysis

df_rawdata = pd.read_csv('WA_Fn_UseC_HR_Employee Attrition.csv')
df_rawdata.head(5)
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Age
0 4
1 49
2 37
3 33
4 27

pe_analytics_eng

Attrition BusinessTravel DailyRate

Yes Travel_Rarely

No Travel_Frequently

Yes Travel_Rarely

No Travel_Frequently

No Travel_Rarely

5 rows x 35 columns

df_rawdata.columns

Index(

1102

279

1373

1392

591

Department DistanceFromHome Education

Sales 1 2
Research &
8 1
Development
Research &
2 2
Development
Research & 3 4
Development
Research & > 1

Development

["Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department’,

'DistanceFromHome', 'Education',

'EducationField', 'EmployeeCount’,

'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',

'JobInvolvement', 'JobLevel',
'MaritalStatus', 'MonthlyIncome’,

'JobRole', 'JobSatisfaction',

'MonthlyRate', 'NumCompaniesWorked',

'Overl8', 'OverTime', 'PercentSalaryHike', 'PerformanceRating’,
'StandardHours', 'StockOptionLevel’,
'TotalWorkingYears', 'TrainingTimeslLastYear', 'WorkLifeBalance',
'YearsAtCompany', 'YearsInCurrentRole', 'YearsSincelLastPromotion',

'RelationshipSatisfaction’,

'YearsWithCurrManager'],
dtype='object")

df_rawdata.info()
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<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, © to 1469
Data columns (total 35 columns):

#  Column Non-Null Count
0 Age 1470 non-null
1 Attrition 1470 non-null
2 BusinessTravel 1470 non-null
3 DailyRate 1470 non-null
4  Department 1470 non-null
5 DistanceFromHome 1470 non-null
6  Education 1470 non-null
7  EducationField 1470 non-null
8  EmployeeCount 1470 non-null
9 EmployeeNumber 1470 non-null
10 EnvironmentSatisfaction 1470 non-null
11 Gender 1470 non-null
12 HourlyRate 1470 non-null
13 JobInvolvement 1470 non-null
14 JoblLevel 1470 non-null
15 JobRole 1470 non-null
16 JobSatisfaction 1470 non-null
17 MaritalStatus 1470 non-null
18 MonthlyIncome 1470 non-null
19 MonthlyRate 1470 non-null
20 NumCompaniesWorked 1470 non-null
21 Overls8 1470 non-null
22 OverTime 1470 non-null
23 PercentSalaryHike 1470 non-null
24 PerformanceRating 1470 non-null
25 RelationshipSatisfaction 1470 non-null
26 StandardHours 1470 non-null
27 StockOptionLevel 1470 non-null
28 TotalWorkingYears 1470 non-null
29 TrainingTimesLastYear 1470 non-null
30 WorkLifeBalance 1470 non-null
31 YearsAtCompany 1470 non-null
32 YearsInCurrentRole 1470 non-null
33 YearsSincelLastPromotion 1470 non-null
34 YearsWithCurrManager 1470 non-null

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

3 Data Cleaning

In order to do data cleaning, | will remove the columns that | will not use for our analysis."
However, prior to doing so, | will create a copy of the database "df_rawdata," allowing me to

refer to the original database if necessary.

3.1 Copy the database

# The copy will be called df_padb from dataframe peopleanalyticsdatabase

df_padb = df_rawdata.copy()
df_padb.head()
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Age Attrition  BusinessTravel DailyRate Department DistanceFromHome Education Educa

0 41 Yes Travel_Rarely 1102 Sales 1 2 Life

1 49 No Travel_Frequently 279 Research & 8 1 Life
Development

2 37 Yes Travel_Rarely 1373 _ Research & 2 2
Development

3 33 No Travel_Frequently 1392 Research & 3 4 Life
Development

4 27 No Travel_Rarely 597 _ Research & 2 1

Development

5 rows x 35 columns

# Checking for missing values
missing values = df_padb.isnull().sum()
print('Number of missing values: ', missing_values)

g
[0}
()

Number of missing values:
Attrition
BusinessTravel
DailyRate

Department
DistanceFromHome
Education
EducationField
EmployeeCount
EmployeeNumber
EnvironmentSatisfaction
Gender

HourlyRate
JobInvolvement

JobLevel

JobRole

JobSatisfaction
MaritalStatus
MonthlyIncome
MonthlyRate
NumCompaniesWorked
Overl8

OverTime
PercentSalaryHike
PerformanceRating
RelationshipSatisfaction
StandardHours
StockOptionLevel
TotalWorkingYears
TrainingTimesLastYear
WorkLifeBalance
YearsAtCompany
YearsInCurrentRole
YearsSincelLastPromotion
YearsWithCurrManager
dtype: inte64

OO0 0O OO0 OO®OM

# Deleting columns that won't be used in the analysis
df_padb.drop([ 'BusinessTravel', 'DailyRate’, 'EmployeeNumber', 'MaritalStatus', 'Nt
df_padb.columns
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Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education’,
'EducationField', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
'MonthlyIncome', 'MonthlyRate', 'OverTime', 'TotalWorkingYears',
'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
"YearsInCurrentRole', 'YearsSincelLastPromotion'],
dtype="object")

3.2 Creating an ID Column

Using a two letter code for the 'Department’ and a four random number combination, | will

make an ID for every employee.

# First let's take a Look at how many departments we have in the database
departments = df_padb[ 'Department’'].value counts()

print(departments)

Research & Development 961
Sales 446
Human Resources 63

Name: Department, dtype: int64

To generate the two-letter code from the 'Department' column, | will write a function. | will
then use the four random integers to form an array. In order to deploy the values into the
'ID" column later, | will merge the two values and save them in a variable.

# Function to create the code values for the departments
def departments_code(departments):
if 'Research & Development' in departments:

return 'RD’

elif 'Sales' in departments:
return 'SL’

else:
return 'HR'

# Now is time to create our random numbers and add them to the TempID column
random_number = np.random.randint (1000, 9999, size=len(df_padb))

# Join the two values together
new_data = df_padb[ 'Department'].apply(departments_code) + pd.Series(random_number’

# Inserting the new ID column with the values created Llately
df_padb.insert(@, 'ID', new_data, True)

df_padb.head()
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ID Age Attrition Department DistanceFromHome Education EducationField Environm

0 SL8842 41 Yes Sales 1 2 Life Sciences

1 RD9746 49 No RepzErdn & 8 1 Life Sciences
Development

2 RD4085 37 Yes Research& 2 2 Other
Development

3 RD8254 33 N RO € 3 4 Life Sciences
Development

4 RD6169 27 No _ Research& 2 1 Medical

Development

5 rows x 23 columns

df_padb[ "ID'].dtype

dtype('0")

3.3 Replacing the code numbers from columns ‘Education’, 'EnvironmentSatisfaction’,
‘JobInvolvement', 'JobSatisfaction', 'PerformanceRating', 'RelationshipSatisfaction’, and
'WorkLifeBalance'

To improve the understanding of the data and make working with it easier, I'll change the
code numbers in those columns. I'll convert the values in this task from integer to string

format, then replace the values with their references.

# Education column
education_ref = {
1: 'Below College’,

2: 'College’,
3: 'Bachelor',
4. 'Master’,
5: 'Doctor’

}

df_padb[ 'Education’'] = df_padb[ 'Education’].map(education_ref)

# 'EnvironmentSatisfaction' column
environment_satisfaction_ref = {

1: 'Low',

2: 'Medium’,
3: 'High',

4: 'Very High'

}

df_padb[ 'EnvironmentSatisfaction'] = df_padb[ 'EnvironmentSatisfaction'].map(enviror

# 'JobInvolvement' column
job_involvement_ref = {

1: 'Low',

2: 'Medium',
3: 'High',

4: 'Very High'

}

df_padb[ 'JobInvolvement'] = df_padb['JobInvolvement'].map(job_involvement_ref)
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# 'JobSatisfaction' column
job_satisfaction_ref = {

1: 'Low',

2: 'Medium',
3: 'High',

4: 'Very High'

}

pe_analytics_eng

df_padb[ 'JobSatisfaction'] = df_padb['JobSatisfaction'].map(job_satisfaction_ref)

# 'WorkLifeBalance' column

wlb_ref =

{

1: 'Bad’,

2: 'Good',
3: 'Better’,
4:

'Best’

}

df_padb[ 'WorkLifeBalance'] = df_padb[ 'WorkLifeBalance'].map(wlb_ref)

df_padb.head()

ID

0 SL8842

1 RD9746

2 RD4085

3 RD8254

4 RD6169

5 rows x 23 columns

3.4 Export our data into an Excel spreadsheet

Age Attrition

41

49

37

33

27

Yes

No

Yes

No

No

Department DistanceFromHome Education

Sales

Research &
Development

Research &
Development

Research &
Development

Research &
Development

1

College

Below
College

College

Master

Below
College

EducationField Environm

Life Sciences

Life Sciences

Other

Life Sciences

Medical

Now that the data has been cleansed and the values have been replaced with their

references, it is time to export the database to an Excel workbook. | will also produce a.csv

file just in case.

# Exporting the data to an Excel spreadsheet

df_padb.to_excel('imb_analytics 2021.xlsx', sheet_name="hr_analytics_2021', index=}

# Exporting the data to a CSV file

df_padb.to_csv('ibm_hranalytics_2021.csv', index=False)

4 Working with the ISO 30414-2018

After the data has been cleansed, it's time to utilize the ISO and begin analyzing the

information to provide HR insights.

4.1 DIVERSITY
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To find out the composition and level of diversification of the firm, | will work using the

information provided in the ISO.

4.1.a Creating the column with the age range

Before starting to work with the data, I'm going to create an age range to simplify the work

and establish a better understanding of the different generations that make up our company

# Function to create the age range

def age _range(age):

if age >= 18 and age <= 27:

return '18
elif age >= 28

return '28
elif age >= 38

return '38
elif age >= 48

return '48
else:

to 27'

and age <= 37:

to 37'

and age <= 47:

to 47'

and age <= 57:

to 57'

return 'more than 58'

# New data

new_age_data = df_padb[ 'Age'].apply(lambda x: pd.Series(age_range(x)))
# print(new_age data)

# Inserting the new column into the dataframe

df_padb.insert(loc=df_padb.columns.get_loc('Age')+1, column='AgeRange', value=new_:

df_padb.head()

ID Age AgeRange Attrition

0 SL8842 41

1 RD9746 49

2 RD4085 37

3 RD8254 33

4 RD6169 27

5 rows x 24 columns

38 to 47 Yes

48 to 57 No

28 to 37 Yes

28 to 37 No

18 to 27
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4.1.b Analysing the data and creating the plots

With the age range column in place, let's review the data and identify the factors required to
create the charts that illustrate the impact of diversity on our organization. I'm going to
create a narrative for every one of these: study field, study level, gender, and age range. We

will be able to see the variety of worker diversity inside our company as a result.

Gaining an understanding of the diversity of our business will help us create a more diverse

workplace and set policies for future hiring.

I'll use matplotlib for the plots.

import matplotlib.pyplot as plt

4.1.b.1 Gender

Let's now examine the gender distribution by looking at the 'Gender' column. The gender
distribution gives us an overview of how gender is spread throughout our business, which
will be helpful for future recruitment efforts.

# Counting the gender values and storage them into a variable
gender_counts = df_padb[ 'Gender'].value_counts()
print(gender_counts)

# Total and percentage variables to use on our charts
total_count = gender_counts.sum()
gender_percentage = (gender_counts / total_count) * 100

# Llabels = gender_counts.index
# Using a function to create the Llabels
labels = [f'{gender} ({count})' for gender, count in zip(gender_counts.index, gende

# Chart size
fig, ax = plt.subplots(figsize=(8, 10))

# Chart generation

plt.pie(gender_counts, labels=labels, autopct='%1.1f%%")
plt.legend(title="Gender")

ax.set_title('Gender Distribution', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()

Male 882
Female 588
Name: Gender, dtype: int64
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Gender Distribution

Male (882)

Gender
Bl Male (882)
mm Female (588)

4.1.b.2 Age Distribution

Female (588)

Continuing with our analysis, we will now examine how our company is composed by ages.

To do this, we will use the values in the column 'AgeRange'. We will be able to know the

composition of our company according to the age ranges. This analysis is useful to know if

we have several employees near retirement.

In [ ]: age_range_count = df_padb['AgeRange'].value_counts()

print(age_range_count)

total_age count = age_range_count.sum()

age_percentage = (age_range_count / total_age count) * 100

labels = [f'{age} ({count})' for age, count in zip(age_range_count.index, age_range
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fig, ax =

plt.subplots(figsize=(9, 12))

pe_analytics_eng

plt.pie(age_range count, labels=labels, autopct='%1.1f%%")
plt.legend(title="Age Range', loc= 'upper left')
ax.set_title('Age Distribution', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()

28 to 37 638
38 to 47 406
18 to 27 210
48 to 57 187
more than 58 29

Name: AgeRange, dtype: int64
Age Distribution

38 to 47 (406)
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Age Range
28 to 37 (638)
38 to 47 (406)
18 to 27 (210)
48 to 57 (187)
more than 58 (29)

28 to 37 (638)

more than 58 (29)

48 to 57 (187)

18 to 27 (210)
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4.1.b.3 More Distributions

What level of training and education do our employees have? | would like to know if workers
need assistance in improving their academic achievement. For this task, the columns
"Education" and "EducationField" will be used by me.

4.1.b.3.a Education Distribution

education_count = df _padb['Education'].value_counts()
print(education_count)

total_education_count = education_count.sum()
education_percentage = (education_count / total_education_count) * 100

labels = [f'{education} ({count})' for education, count in zip(education_count.inde
fig, ax = plt.subplots(figsize=(9, 12))

plt.pie(education_count, labels=labels, autopct='%1.1f%%")
plt.legend(title="'Education', loc= 'upper left')

ax.set_title('Education Distribution', fontsize=18, fontweight='bold")
plt.axis('equal’)

plt.show()

Bachelor 572
Master 398
College 282
Below College 170
Doctor 48

Name: Education, dtype: int64
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Education Distribution

Education
Bachelor (572)
Master (398)
College (282)
Below College (170)
Doctor (48)

Bachelor (572)

Doctor (48)
Master (398)

Below College (170)

College (282)

4.1.b.3.b Field Education Distribution

The objective of the subsequent analysis is to determine how people are distributed

according to the different educational qualifications they have.

In [ ]: educationfield_count = df_padb['EducationField"].value_counts()
print(educationfield_count)

total_educationfield count = educationfield_count.sum()
educationfield_percentage = (educationfield_count / total_educationfield_count) * 1

labels = [f'{education} ({count})' for education, count in zip(educationfield_couni

fig, ax = plt.subplots(figsize=(9, 12))

plt.pie(educationfield count, labels=labels, autopct='%1.1f%%")
plt.legend(title='Education Fields', loc= ‘'upper left')
ax.set_title('Education Field Distribution', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()
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Life Sciences 606
Medical 464
Marketing 159
Technical Degree 132
Other 82
Human Resources 27

Name: EducationField, dtype: int64
Education Field Distribution

Education Fields
Life Sciences (606)
Medical (464)
Marketing (159)
Technical Degree (132)

Other (82) Life Sciences (606)
Human Resources (27)

Human Resources (27)

Other (82)

Medical (464)

Technical Degree (132)

Marketing (159)

4.1.c Appendix

| compute certain numbers in this appendix for use in upcoming analyses. Recall that in the
future, we want to compare and understand how diversity evolves throughout time.

In [ ]: # Calculate the employees average age
age_info = df_padb[ 'Age’].describe()
print(age_info)

age_sum = df_padb[ "'Age'].mean().round(0)

print("\nThe average Age is:")
print(age_sum)
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count 1470 .000000

mean 36.923810
std 9.135373
min 18.000000
25% 30.000000
50% 36.000000
75% 43.000000
max 60.000000

Name: Age, dtype: float64

The average Age is:
37.0

4.2 JOB SATISFACTION

Let's examine employee's satisfaction levels across the company's different roles. Which role

has the greatest or lowest degree of contentment? With this metric, we can identify those

roles where satisfaction is low, discover what is causing the low levels, and design or create

strategies to improve it.

I'll start by tallying the distribution of the satisfaction categories.

# Count the satisfaction categories.
job_satisfaction_count = df_padb['JobSatisfaction'].value_counts()
print(job_satisfaction_count)

job_satisfaction_total = df_padb[ 'JobSatisfaction'].sum()
labels = [f'{jobsatisfaction} ({count})' for jobsatisfaction, count in zip(job_sati
fig, ax = plt.subplots(figsize=(8, 10))

plt.pie(job_satisfaction_count, labels=1labels, autopct='%1.1f%%"', pctdistance=0.85’
plt.legend(title="Satisfaction Levels', loc= 'upper left')
ax.set_title('Satisfaction Distribution', fontsize=18, fontweight='bold")
plt.axis('equal’)

# draw circle

centre_circle = plt.Circle((9, 90), 0.70, fc="white")

fig = plt.gcf()

# Adding Circle in Pie chart
fig.gca().add_artist(centre_circle)

plt.show()

Very High 459
High 442
Low 289
Medium 280

Name: JobSatisfaction, dtype: inté64
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Satisfaction Distribution

Satisfaction Levels
B Very High (459)
e High (442)
Bl Low (289)

I Medium (280)

Very High (459)

High (442)

Medium (280)

Low (289)

The data shows that 79,7% of the employees have Low satisfaction with their job. | will
identify which of the roles are not so satisfied with their job

In [ ]: # With a pivot table, I will identify the responses for each department about their
pivot = pd.pivot_table(df_padb[[ 'Department’', 'JobSatisfaction']], index='Departmer
print("Pivot Table with Counts:")
print(pivot)

# Let's calculate the percentage of satisfaction for each department and their cate
pivot_percentage = pivot.div(pivot.sum(axis=1), axis=0).round(2) * 100

# Define the desired order of values
desired_order = ['Low', 'Medium', 'High', 'Very High']

# Reindex the DataFrame to specify the desired order
pivot_percentage_ordered = pivot_percentage.reindex(desired_order, axis=1)

print("\nPivot Table with Percentages:")
print(pivot_percentage)
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Pivot Table with Counts:

JobSatisfaction High Low Medium Very High
Department

Human Resources 15 11 20 17
Research & Development 300 192 174 295
Sales 127 86 86 147

Pivot Table with Percentages:

JobSatisfaction High Low Medium Very High
Department

Human Resources 24.0 17.0 32.0 27.0
Research & Development 31.0 20.0 18.0 31.0
Sales 28.0 19.0 19.0 33.0

Let's create a chart to visualize our data.

In [ ]: # Creating the chart to visualize our data
ax = pivot_percentage_ordered.plot(kind="bar', stacked=True, figsize=(10, 8), widtt

# Adding the values to the bars
for container in ax.containers:
ax.bar_label(container, label type='center', fontsize=10)

plt.title('Job Satisfaction by Department', fontsize=18, fontweight='bold")
plt.xlabel('Department’)

plt.ylabel('Percentage’)

plt.xticks(rotation=45)

plt.legend(title="Job Satisfaction', bbox_to_anchor=(1, 1), loc="upper left")
plt.tight_layout()

plt.show()

Job Satisfaction by Department

Job Satisfaction
Low
Medium
High

Very High

100 +

80

60

Percentage

40

20

Department

Previously, looking at the overall percentage among departments, we found that 19.7% of all

employees have a low motivation with their work.
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In order to have a more detailed report, | proceeded to break down by department in order
to know more deeply the dissatisfaction with the work. We have to keep in mind that out of
1470 employees, 63 belong to the HRD department, 961 to the Research and Development
department and 446 to Sales. The percentages of dissatisfaction between the three
departments were very similar. RRHH presented a 17% about 11 employees, R&D a total of
20% about 192 employees and Sales total of 19% about 86 employees.

We can indicate that in the R&D department we have the largest number of employees who
are dissatisfied or low motivated with their work. It is recommended to investigate what is
causing this and find some solutions.

| would like to make an assessment: in RRHH there are 17% of employees with low motivation
and 32% with medium motivation. It is recommended to follow up to see if these indices are
rising because we would have most half of the department with a low motivation with their
tasks. While the other two departments showed high rates of average and high satisfaction
with their work.

4.2.a Appendix

In order to further my investigation, | choose to find out how many of them are "Very High"
invested in their work and what proportion of them have “Low" motivation. | will identify
the employees who exhibit "Low" motivation by utilizing the Joblnvolvement' column.
Those with "High" participation and “Low" satisfaction will also be examined by me.

# Create a copy of the columns to work better with them
job_db = df _padb[['JobInvolvement', 'JobSatisfaction']].copy()

# Filtering the data
jobFilteredData_VHL = job_db[(job_db[ 'JobInvolvement'] == 'Very High') & (job_db[":
jobFilteredData_HL = job_db[ (job_db[ 'JobInvolvement'] == 'High') & (job_db[ 'JobSati

# Counting the filtered data.

countVH_Low = jobFilteredData_VHL.shape[@0]

countH_Low = jobFilteredData_HL.shape[0]

print("The total number of employees with Very High Job Involvement and Low Job Sat
print("The total number of employees with High Job Involvement and Low Job Satisfac

# Percentage they represent

percentageVH_Low = countVH_Low / len(df_padb) * 100

percentageH_Low = countH_Low / len(df_padb) * 100

print('The employees with Very High Job Involvement and Low Job Satisfaction repres
print('The employees with High Job Involvement and Low Job Satisfaction represents

The total number of employees with Very High Job Involvement and Low Job Satisfact
ion is: 34

The total number of employees with High Job Involvement and Low Job Satisfaction i
s: 166

The employees with Very High Job Involvement and Low Job Satisfaction represents a
percentage of: 2.31

The employees with High Job Involvement and Low Job Satisfaction represents a perc
entage of: 11.29

4.3 CAREER PROGRESSION

Is there decent career growth at the company? Through data analysis, my goal is to ascertain

whether the organization provides its employees with a decent opportunity for professional
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advancement. Can this be related to low work satisfaction?. | will use for the analysis the
data from the column 'YearsAtCompany'.

df_total_records = len(df_padb)
print(df_total_records)

1470

departments_count = df_padb[ 'Department'].value_counts()
print('By department there are the following number of employees:
# Preparing the data

, "\n", departme

sales_count = df_padb[df_padb[ 'Department'] == 'Sales'].groupby('YearsAtCompany").s
rrhh_count = df_padb[df_padb[ 'Department'] == 'Human Resources'].groupby('YearsAtCc
rd_count = df_padb[df_padb[ 'Department’'] == 'Research & Development'].groupby('Year

# Creating the Lline plot
plt.figure(figsize=(8, 4))

# Ploting the Llines

plt.plot(sales_count.index, sales_count.values, label='Sales', marker='o', ms = 3)
plt.plot(rrhh_count.index, rrhh_count.values, label='Human Resources', marker='o',
plt.plot(rd_count.index, rd_count.values, label='Research & Development', marker="c

# Adding Labels

plt.xlabel('Years at the Company"')

plt.ylabel('Employee Count')

plt.title('Years at the Company by Department', fontsize=18, fontweight='bold")
plt.legend(title="'Departments’, bbox_to_anchor=(1, 1), loc='upper left')
plt.show()

By department there are the following number of employees:
Research & Development 961

Sales 446

Human Resources 63

Name: Department, dtype: int64

Years at the Company by Department

Departments
120 A —— Sales
—+— Human Resources
100 A —=— Research & Development
o
(=
3 80
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3 60
o
£
w40
20
0 - L S —
T T T T T T T T T
0 5 10 15 20 25 30 35 40

Years at the Company

Let's examine how many years the employee's stay in the same role in their departments.

# Preparing the data

sales_count_cr = df_padb[df_padb[ 'Department’'] == 'Sales'].groupby('YearsInCurrentf
rrhh_count_cr = df_padb[df_padb[ 'Department’'] == 'Human Resources'].groupby('Years]
rd_count_cr = df_padb[df_padb[ 'Department’'] == 'Research & Development'].groupby("

# Creating the Line plot
plt.figure(figsize=(8, 4))

# Ploting the Lines
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plt.plot(sales_count_cr.index, sales_count_cr.values, label='Sales', marker='o', ms¢
plt.plot(rrhh_count_cr.index, rrhh_count_cr.values, label='Human Resources', marker
plt.plot(rd_count_cr.index, rd_count_cr.values, label='Research & Development', mar

# Adding Labels

plt.xlabel('Years")

plt.ylabel("Employee's per Department™)

plt.title('Years at current Role by Department', fontsize=18, fontweight='bold")
plt.legend(title="Departments’, bbox_to_anchor=(1, 1), loc='upper left')
plt.show()

Years at current Role by Department
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£
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=
£
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average_years = df_padb[ 'YearsAtCompany'].mean().round()
average_years_at_role = df_padb[ 'YearsInCurrentRole'].mean().round()
average_years_promotion = df_padb['YearsSincelLastPromotion'].mean().round()
max_years_in_role = df_padb[ 'YearsInCurrentRole'].max()

print(
"Average years at the Company:
"Average years at a Role: ", average_years_at_role, "\n",
"Average Years since last Promotion: ", average_years_promotion, "\n",
"Max Years in a Role: ", max_years_in_role)

# print(max_years_in_role)

"

, average_years, "\n",

Average years at the Company: 7.0
Average years at a Role: 4.0

Average Years since last Promotion: 2.0
Max Years in a Role: 18

Most employees are between 0 and 10 years working for the company. And we can see that it
decreases significantly after ten years. So | tried to figure out how long the average employee
stays in the company and found out that it's 7 years, with 4 years on average working in the

same position. Then | decided to investigate the company's promotion system and found out
that our company has an average of two years to grant promotions.

A first promotion can be seen around 2 years after joining the company, and then a second
promotion can be seen 5 years later. Then there may be a change of business, or the person
may continue to work in the position until his retirement.

For more information, the maximum number of years in a single role was examined. It was
found that the longest duration in a position is 18 years.

4.4 COMPENSATION ANALYSIS
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It's time to analyze whether there is a significant disparity between employee salaries and

educational attainment. 'Monthlylncome' values will be used, and the values will be

distributed according to the values in the 'Education’' column.

# To facilitate our work, I will create a table with the required columns 'Monthly]
df_monthedu = df_padb[[ 'MonthlyIncome', 'Education']].copy()
df_monthedu.head()

Monthlylncome

5993

Education

College

5130 Below College

2090

2909

College

Master

3468 Below College

It's time to work with our new data frame. Let us calculate the median for every category of

education.

# First,

let's calculate the median from the 'MonthlyIncome' column.
monthlyIncome_median = df_monthedu[ '"MonthlyIncome'].median()

# Second, let's calculate the median for each category of education

below_college _median = df_monthedu[df_monthedu[ 'Education'] == 'Below College'].grc
college median = df_monthedu[df_monthedu[ 'Education'] == 'College'].groupby('Educal
bachelor_median= df_monthedu[df_monthedu[ 'Education'] == 'Bachelor'].groupby('Educ:

master_median =
doctor_median =
print(

"The
"The
"The
"The
"The
'The

median
median
median
median
median
median

df_monthedu[df_monthedu[ 'Education
df_monthedu[df_monthedu[ 'Education

'] == 'Master'].groupby('Educatic
'] == 'Doctor'].groupby('Educatic
for Below College Education is: ", below_college_median.values, "\r
for College Education is: ", college_median.values, "\n",

for Bachelor Education is: ", bachelor_median.values, "\n",

for Master Education is: ", master_median.values, "\n",

for Doctor Education is: ", doctor_median.values, "\n",

for the "MonthlyIncome" column is: ', monthlyIncome_median )

The median for Below College Education is: [[3849.]]
median for
median for
median for
median for
median for

The
The
The
The
The

College Education is: [[4891.5]]
Bachelor Education is: [[4762.]]
Master Education is: [[5341.5]]
Doctor Education is: [[6203.]]

the "MonthlyIncome" column is: 4919.0

To see our data, let's make some charts. | will use a Bar chart to compare the monthly

income median of each education level.

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables

bar_data

= [below_college median[ "MonthlyIncome'].values[@],
college median[ 'MonthlyIncome'].values[@],
bachelor_median[ 'MonthlyIncome'].values[@],
master_median[ ‘MonthlyIncome'].values[©@],
doctor_median[ ‘MonthlyIncome'].values[@]]

education_cat =

['Below College', 'College', 'Bachelor', 'Master', 'Doctor’]
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# Adding the Llabels
for i, value in enumerate(bar_data):
plt.text(i, value, str(value), ha='center', va='top', color='white")

# Add the average Lline
plt.axhline(monthlyIncome_median, color='blue', linestyle='--', label='Media')

# Add the value of the average to the Lline
plt.text(len(education_cat) + 0.6, monthlyIncome_median, f'Median: {monthlyIncome_n

# Joining the data to create the chart

plt.bar(education_cat, bar_data)

plt.xlabel('Education Level')

plt.ylabel('Monthly Income"')

plt.title('Median Monthly Income by Education Level', fontsize=18, fontweight='bolc
plt.show()

Median Monthly Income by Education Level

6000 -

5000 A _|Median: 4919.0

B

[=]
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[=}
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[=
=1
=t
1

2000 A

1000 -

Below College College Bachelor Master Doctor
Education Level

Employees with a Bachelor's degree have less income than those with a College degree,
according to the findings when viewed using the median. But keep in mind that we have
more employees with Bachelor's degrees than the college does, so I'll check to see if the

mean exhibits the same abnormality.

# First, let's calculate the mean from the 'MonthlyIncome’' column.
monthlyIncome_mean = df_monthedu[ 'MonthlyIncome'].mean().round(2)

# Second, let's calculate the mean for each category of education

below_college mean = df_monthedu[df_monthedu[ 'Education’'] == 'Below College'].groug
college mean = df_monthedu[df_monthedu[ 'Education’'] == 'College'].groupby('Educatic
bachelor_mean= df_monthedu[df_monthedu[ 'Education'] == 'Bachelor'].groupby('Educati

== 'Master'].groupby('Education
== 'Doctor'].groupby('Education

master_mean = df_monthedu[df_monthedu[ 'Education
doctor_mean = df_monthedu[df_monthedu[ 'Education
print(

"The mean for Below College Education is: ", below_college _mean.values, "\n",

"The mean for College Education is: ", college_mean.values, "\n",

"The mean for Bachelor Education is: ", bachelor_mean.values, "\n",

']
']
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"The mean for Master Education is: ", master_mean.values, "\n",
"The mean for Doctor Education is: ", doctor_mean.values, "\n",
'The mean for the "MonthlyIncome" column is: ', monthlyIncome_mean )

The mean for Below College Education is: [[5640.57]]
The mean for College Education is: [[6226.65]]
The mean for Bachelor Education is: [[6517.26]]
The mean for Master Education is: [[6832.4]]
The mean for Doctor Education is: [[8277.65]]
The mean for the "MonthlyIncome" column is: 6502.93

| can establish that employees with a Bachelor's degree have more income than those with a
College degree by looking at the mean. By the time, there is no problem with the salaries,
but it's crucial to note that certain Bacherlor employees are not getting_paid enough. The

mean for the Bachelor's degree is 6517,26 against the 6226,65 from the College degree.

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables
bar_mean_data = [below_college_mean[ 'MonthlyIncome'].values[©@],
college _mean[ 'MonthlyIncome'].values[©@],
bachelor_mean[ '"MonthlyIncome'].values[@],
master_mean[ "MonthlyIncome'].values[0],
doctor_mean[ "MonthlyIncome'].values[0]]
education_cat = ['Below College', 'College', 'Bachelor', 'Master', 'Doctor']

# Adding the Llabels
for i, value in enumerate(bar_mean_data):
plt.text(i, value, str(value), ha='center', va='bottom', color='red")

# Add the average Line
plt.axhline(monthlyIncome_mean, color='blue', linestyle="'--', label="'Media')

# Add the value of the average to the Lline
plt.text(len(education_cat) + 0.8, monthlyIncome_mean, f'Average: {monthlyIncome_me

# Joining the data to create the chart

plt.bar(education_cat, bar_mean_data)

plt.xlabel('Education Level')

plt.ylabel('Monthly Income")

plt.title('Average Monthly Income by Education Level', fontsize=18, fontweight='bol
plt.show()
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Average Monthly Income by Education Level
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4.4 TRAINING AND DEVELOPMENT

Continuing with our descriptive analysis, | will explore the years the company has committed
to providing training to their employees in each department. | will make an effort to identify

potential areas to improve the training and which departments could benefit more.

# To facilitate our work, I will create a table with the required columns 'Monthlyi
df_timesTraining = df_padb[['Department', 'TrainingTimesLastYear']].copy()
df_timesTraining.head()

Department TrainingTimesLastYear

0 Sales 0
1 Research & Development 3
2 Research & Development 3
3 Research & Development 3
4 Research & Development 3

timesTraining_average = df_timesTraining['TrainingTimesLastYear'].mean().round(2)

# Second, let's calculate the average times commited in training for each departmer

sales_training_average = df_timesTraining[df_timesTraining[ 'Department'] == 'Sales'
rrhh_training_average = df_timesTraining[df_timesTraining[ 'Department’] == 'Human F
rd_training_average= df_timesTraining[df_timesTraining[ 'Department’'] == 'Research ¢
print(

"The average training time dedicated in Sales is:
"The average training time dedicated in Human Resources is: ", rrhh_training_a\
"The average training time dedicated in Research & Development is: ", rd_traini
'The average times for the "TrainingTimelLastYear" column is: ', timesTraining_:

, sales_training_average.val
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The average training time dedicated in Sales is: [[2.85]]
The average training time dedicated in Human Resources is: [[2.56]]
The average training time dedicated in Research & Development is: [[2.79]]
The average times for the "TrainingTimeLastYear" column is: 2.8

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables

bar_training _data = [sales_training_average['TrainingTimeslLastYear'].values[@],
rrhh_training_average[ 'TrainingTimesLastYear'].values[@O],
rd_training_average[ 'TrainingTimesLastYear'].values[0]

]

department_cat = ['Sales’', 'Human Resources', 'Research & Development']

# Adding the Llabels
for i, value in enumerate(bar_training data):
plt.text(i, value, str(value), ha='center', va='bottom', color='red")

# Add the average Line
plt.axhline(timesTraining_average, color='blue', linestyle='--

, label='Average Tr:

# Add the value of the average to the Line
plt.text(len(department_cat), timesTraining_average, f'Average: {timesTraining_aver

# Adjust y-axis Limits to ensure the Line 1is visible
plt.ylim(@, max(bar_training_data) + 2)

# Joining the data to create the chart

plt.bar(department_cat, bar_training_data)

plt.xlabel('Department’)

plt.ylabel('Average Training Time')

plt.title('Average Training Times Dedicated by Department', fontsize=18, fontweighi
plt.show()
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# Second, let's calculate the average years commited in training for each departmer
sales_training sum = df_timesTraining[df_timesTraining[ 'Department'] == 'Sales'].gr
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rrhh_training_sum = df_timesTraining[df_timesTraining[ 'Department’'] == "Human Resol
rd_training_sum= df_timesTraining[df_timesTraining[ 'Department’'] == 'Research & De\

print(
"The total training time dedicated in Sales is:
"The total training time dedicated in Human Resources is: ", rrhh_training_sum.
"The total training time dedicated in Research & Development is: ", rd_training
'The total years for the "TrainingTimelLastYear" column is: ', timesTraining_ave

, sales_training_sum.values,

The total training time dedicated in Sales is: [[1270]]
The total training time dedicated in Human Resources is: [[161]]
The total training time dedicated in Research & Development is: [[2684]]
The total years for the "TrainingTimelLastYear" column is: 2.8

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables

bar_training_data = [sales_training_sum['TrainingTimesLastYear'].values[@],
rrhh_training_sum[ 'TrainingTimesLastYear'].values[@],
rd_training_sum[ 'TrainingTimesLastYear'].values[©@]

]

department_cat = ['Sales', 'Human Resources', 'Research & Development']

# Adding the Llabels
for i, value in enumerate(bar_training data):
plt.text(i, value, str(value), ha='center', va='bottom', color='red")

# Joining the data to create the chart

plt.bar(department_cat, bar_training data)

plt.xlabel('Department")

plt.ylabel('Training Times"')

plt.title('Total Training Times Dedicated by Department', fontsize=18, fontweight='
plt.show()
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4.5 WORK-LIFE BALANCE AND OVERTIME ANALYSIS

These days, evaluating the workers' work-life balance is among the most crucial
evaluations. Let's investigate if they are working too much and whether they are able to
make up for their job hours with their free time. Recall that most workers value a healthy

work-life balance, particularly in light of the growing_popularity of remote employment.

df_wlb = df_padb[['OverTime', 'JobSatisfaction', 'WorkLifeBalance', 'DistanceFromHc
df_wlb.head()

OverTime JobSatisfaction WorkLifeBalance DistanceFromHome

0 Yes Very High Bad 1
1 No Medium Better 8
2 Yes High Better 2
3 Yes High Better 3
4 No Medium Better 2

# Let's analyze the data from the OverTime column
overtime_count = df_wlb['OverTime'].value counts()
print(overtime_count)

# Total and percentage variables to use on our charts
total_overtime_count = overtime_count.sum()
overtime_percentage = (overtime_count / total_count) * 100

# Labels = gender_counts.index
# Using a function to create the Llabels
labels = [f'{overtime} ({count})' for overtime, count in zip(overtime_count.index,

# Chart size
fig, ax = plt.subplots(figsize=(8, 10))

# Chart generation

plt.pie(overtime_count, labels=labels, autopct="%1.1f%%")
plt.legend(title="Overtime Count')

ax.set_title('Overtime Distribution', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()
No 1054
Yes 416

Name: OverTime, dtype: int64
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Overtime Distribution

Overtime Count
B No (1054)
 yes (416)

Mo (1054)

Yes (416)

A review of the 'OverTime' column data reveals that just 28.3% of our staff members work
overtime. It is not possible to ascertain how an employee's work-life balance is impacted by

overtime. In order to obtain a useful result, | thus choose to look at the numbers in the
"WorkLifeBalance" column.

In [ ]: # Let's analyze the data from the OverTime column
wlbalance_count = df_wlb[ 'WorkLifeBalance'].value counts()
print(wlbalance_count)

# Total and percentage variables to use on our charts

total_wlbalance_count = wlbalance_count.sum()
wlbalance_percentage = (wlbalance_count / total count) * 100
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# Labels = gender_counts.index
# Using a function to create the Llabels
labels = [f'{wlbalance} ({count})' for wlbalance, count in zip(wlbalance_count.inde

# Chart size
fig, ax = plt.subplots(figsize=(8, 10))

# Chart generation

plt.pie(wlbalance_count, labels=labels, autopct='%1.1f%%")
plt.legend(title="Work-Life Balance')

ax.set_title('Work-Life Distribution', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()

Better 893
Good 344
Best 153
Bad 80

Name: WorkLifeBalance, dtype: int64

Work-Life Distribution

Work-Life Balance
B Better (893)
. Good (344)
BN Best (153)

Emm Bad (80)

Better (893)

Bad (80)

Best (153)

Good (344)
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More pertinent information about our employees' appreciation of work-life balance was
found in the 'WorkLifeBalance' column. According to my research, 5.4% of workers think

that there is not a good work-life balance. I'm now attempting to determine whether there is

another factor influencing them. Let's narrow down the data to just see those whose "Job
Satisfaction" and "WorkLifeBalance" are both "Low". Also | will explore if they work
‘OverTime'

# Filtering the data
wlb_JsWlb_low = df_wlb[(df _wlb[ 'WorkLifeBalance'] == 'Bad’

) df_wlb[ 'JobSatisfaci
wlb_JsWlb_good = df_wlb[(df_wlb[ 'WorkLifeBalance'] == 'Good'

& (

) & (df_wlb['JobSatisf:
# Counting the filtered data.

countWlbls_low = wlb_JsWlb_low.shape[@]

countWlbls_good = wlb_JsWlb_good.shape[0]

print("The total number of employees with Low Job Satisfaction, Bad Work-Life Balar
print("The total number of employees with Good Job Satisfaction, Bad Work-Life Bal:

The total number of employees with Low Job Satisfaction, Bad Work-Life Balance and
Over time Yes, is: 2

The total number of employees with Good Job Satisfaction, Bad Work-Life Balance an
d Over time Yes is: 17

df_wlb[ 'DistanceFromHome'].describe()

count 1470 .000000

mean 9.192517
std 8.106864
min 1.000000
25% 2.000000
50% 7 .000000
75% 14 .000000
max 29.000000

Name: DistanceFromHome, dtype: float64

| discovered after analyzing the data that employees are satisfied with the work-life balance
the organization provides. Emphasizing and attempting to implement a policy to lower the
28.3% of workers over time is crucial. Additionally, | discovered that very few workers truly
struggle with work-life balance, thus attending_this employee disconfirmation is advised.

4.6 ATTRITION ANALYSIS

Now it's time to attend to one of the most important metrics for our company: the attrition

rate of the company during 2021. Knowing the rate of turnover in our organization will help

us know if we are losing underperforming employees or the good ones. Maybe a high rate of
turnover means that we are losing low-performing employees; this metric will help us retain
good talent.

# Creating a data frame to make it easier to work with the data
df_attrition = df_padb[['Attrition', 'EnvironmentSatisfaction', 'JobInvolvement',
df_attrition.head()
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Attrition EnvironmentSatisfaction Joblnvolvement JobSatisfaction Monthlyincome OverTime

0 Yes Medium High Very High
1 No High Medium Medium
2 Yes Very High Medium High
3 No Very High High High
4 No Low High Medium

5993

5130

2090

2909

3468

With the new data frame, now we can calculate the attrition rate of our company

# Let's analyze the data from the OverTime column
attrition_count = df_attrition['Attrition'].value_counts()

print('The attrition count is: ', '\n', attrition_count)

# Total and percentage variables to use on our charts
total_attrition_count = attrition_count.sum()
attrition_percentage = (attrition_count / total count) * 100

print('The attrition percentage is: ', '\n', round(attrition_percentage, 1))

# Labels = gender_counts.index
# Using a function to create the Llabels

labels = [f'{attrition} ({count})' for attrition, count in zip(attrition_count.inde

# Chart size
fig, ax = plt.subplots(figsize=(8, 10))

# Chart generation

plt.pie(attrition_count, labels=labels, autopct='%1.1f%%")
plt.legend(title="Attrition Count')

ax.set_title('2021 Attrition Rate', fontsize=18, fontweight='bold")
plt.axis('equal')

plt.show()

The attrition count is:
No 1233
Yes 237
Name: Attrition, dtype: int64
The attrition percentage is:
No 83.9
Yes 16.1
Name: Attrition, dtype: float64
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2021 Attrition Rate

Attrition Count
E pNo (1233)
mm Yes (237)

No (1233)

Yes (237)

With a 16.1% attrition rate in 2021, 237 employees departed the organization in total. Let's
attempt to ascertain whether they were driven by any particular reason or whether a change
was all they desired.

In [ ]: # Filtering the data
attrition_worstvalues = df_attrition[(df_attrition['EnvironmentSatisfaction'] == "I
attrition_mediumvalues = df_attrition[(df_attrition['EnvironmentSatisfaction'] == '

# Counting the filtered data.

count_attrition_wv = attrition_worstvalues.shape[9]

count_attrition_mv = attrition_mediumvalues.shape[9]

print(“The number of employees who leave the company with Job Satisfaction and Envi
print(“The number of employees who leave the company, with Job Satisfaction 'Low' ¢
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The number of employees who leave the company with Job Satisfaction and Environmen
t Satisfaction 'Low', and working Over time is: 15

The number of employees who leave the company, with Job Satisfaction 'Low' and Env
ironment Satisfaction 'Medium', and working Over time is: 16

Let's find out if the employee's choice to quit the firm was influenced by their monthly
income.

# Calculating the monthly income mean
attrition_mincome_mean = df_attrition['MonthlyIncome'].mean().round(2)
print(attrition_mincome_mean)

# Filtering the attrition data by those who are under or over the mean monthly incc
attrition_over_mean_mi = df_attrition[(df_attrition[ 'MonthlyIncome'] > attrition_mi
attrition_under_mean_mi = df_attrition[(df_attrition['MonthlyIncome'] < attrition_n

count_attrition_over_mean = attrition_over_mean_mi.shape[0]
count_attrition_under_mean = attrition_under_mean_mi.shape[0]

print('The number of employees who left and were over the mean is: ', count_attriti
print('The number of employees who left and were under the mean is: ', count_attrit

6502.93
The number of employees who left and were over the mean is: 52
The number of employees who left and were under the mean is: 185

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables
attrition_data = [count_attrition_over_mean, count_attrition_under_mean]
attrition_cat = ['Above', 'Below’]

# Adding the Llabels
for i, value in enumerate(attrition_data):
plt.text(i, value, str(value), ha='center', va='bottom', color="red")

# Joining the data to create the chart

plt.bar(attrition_cat, attrition_data, color=['blue', ‘'orange'])
plt.xlabel('Categories’)

plt.ylabel('Employees count')

plt.title('Over-and-Under-Average Withdrawal Count', fontsize=18, fontweight='bold'
plt.show()
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Over-and-Under-Average Withdrawal Count
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After the analysis the data shows us that 52 of the 237 employees who left the firm had

monthly incomes that were above average, while 185 of the employees who left had their
incomes below average.

Let's examine the distribution of attrition by Gender and Age Range.

# Let's start examining by the gender
attrition_female = df_attrition[(df_attrition['Gender'] == 'Female') & (df_attritic
attrition_male = df_attrition[(df_attrition['Gender'] == 'Male') & (df_attrition['/

# Counting the distribution of attrition by gender
count_attrition_female = attrition_female.shape[9]
count_attrition_male = attrition_male.shape[9]

print('Number of females that had resigned from the company: ', '\n', count_attriti
print('Number of males that had resigned from the company: ', '\n', count_attritior

Number of females that had resigned from the company:
87

Number of males that had resigned from the company:
150

# Let's create the Bar chart
plt.figure(figsize = (8, 6))

# Adding the variables
gender_attrition_data = [count_attrition_female, count_attrition_male]

attrition_gender_cat = ['Female', 'Male’]

# Adding the Llabels
for i, value in enumerate(gender_attrition_data):
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plt.text(i, value, str(value), ha='center', va='bottom', color='red")

# Joining the data to create the chart

plt.bar(attrition_gender_cat, gender_attrition_data, color=['blue', 'orange'])
plt.xlabel('Gender")

plt.ylabel('Employees count')

plt.title('Attrition Distribution by Gender', fontsize=18, fontweight='bold")
plt.show()

Attrition Distribution by Gender
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# Filtering the Attrition by the value 'Yes'
age_range_attrition_filter = df_attrition[(df_attrition['Attrition'] == 'Yes')]

colors = ['skyblue', 'salmon', 'lightgreen’', 'orange', 'lightblue’]

# Group the values by the 'AgeRange’
attrition_by_age = age_range_attrition_filter.groupby('AgeRange').size()

# Create bar chart
ax = attrition_by age.plot(kind="bar', color=colors)

# Explicitly specify x-axis tick locations and labels
ax.set_xticks(range(len(attrition_by_age)))
ax.set_xticklabels(attrition_by age.index, rotation=45, ha='right")

# Add values to the bars
for i, v in enumerate(attrition_by age):
ax.text(i, v + 0.1, str(v), ha='center', va='bottom")

# Add Llabels and title

plt.xlabel('Age Range')

plt.ylabel('Attrition Count")

plt.title('Attrition Count by Age Range', fontsize=18, fontweight='bold")

# Show plot
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plt.tight_layout()

plt.show()
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When | break down the resignations by age range, | find that the age range of 18 to 47 years
old is where the firm is losing_the most employees, with 210 departing. The age range of 28

to 37 years old is where the company records the highest number of resignations.

From what | see with the age range, let's investigate if, from those resignations, the company
is losing good talent. | will analyze attrition based on the employee's education level.

# Filtering the Attrition by the value 'Yes'
education_attrition_filter = df_attrition[(df_attrition['Attrition'] == 'Yes')]
colors = ['skyblue', 'salmon', 'lightgreen’', 'orange', 'lightblue’]

# Group the values by the 'AgeRange’
attrition_by education = education_attrition_filter.groupby('Education’).size()

# Define the desired order of education Llevels
desired_order = ['Below College', 'College', 'Bachelor', 'Master', 'Doctor']

# Reindex the Series according to the desired order
attrition_by_education = attrition_by_ education.reindex(desired_order)

# Create bar chart
ax = attrition_by education.plot(kind="bar', color=colors)

# Explicitly specify x-axis tick locations and Labels
ax.set_xticks(range(len(attrition_by age)))
ax.set_xticklabels(attrition_by_ education.index, rotation=45, ha='right")

# Add values to the bars
for i, v in enumerate(attrition_by_ education):
ax.text(i, v + 0.1, str(v), ha='center', va='bottom")
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# Add Llabels and title

plt.xlabel('Age Range')

plt.ylabel('Attrition Count")

plt.title('Attrition Count by Age Range', fontsize=18, fontweight='bold")

# Show plot
plt.tight_layout()
plt.show()

Attrition Count by Age Range
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When | break down the resignations by educational level, | find that employees with degrees

of "Bachelor" and "Master", followed by "College", are the most likely to quit, registering a
total of 201 resignations. This information raises the possibility that the organization is losing
talent as a result of the resignations.

4.7 MACHINE LEARNING MODELS

Let's attempt to create some Machine Learning Models using the company's data.
Remember that for this kind of analysis, we need to use Numpy.

4.7.a Correlation between Salary and Experience - Linear Regression

I'll use the data from the columns "Monthlylncome" and "TotalWorkingYears" for this study.

The Linear Regression Model will be my tool. | would want to know if the pay is

commensurate with years of experience.

| will use two types of calculations, one using Numpy and the other from StatsModels, which

include information such as coefficients, standard errors, t-values, p-values, and R-squared,
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which are crucial for interpreting the results of the linear regression model. To visualize the
data, I will use a scatter plot

# Creating our data frame
df_salary = df_padb[[ 'MonthlyIncome', 'TotalWorkingYears']].copy()
df_salary.describe()

Monthlylncome TotalWorkingYears

count 1470.000000 1470.000000
mean 6502.931293 11.279592
std 4707.956783 7.780782
min 1009.000000 0.000000
25% 2911.000000 6.000000
50% 4919.000000 10.000000
75% 8379.000000 15.000000
max 19999.000000 40.000000

4.7.a.1 Linear Regression - Numpy

# Defining the data for the x-axis and y-axis
x = df_salary[ 'TotalWorkingYears'];
y = df_salary[ 'MonthlyIncome'];

# Creating the plot
plt.scatter(x = x, y =y, color="#9467bd")

#obtain m (slope) and b(intercept) of Llinear regression Line
m, b = np.polyfit(x, y, 1)

lreg = np.corrcoef(x, y)

# Ploting the Llinear regression Line

plt.plot(x, m*x+b, color='red")

# Adding labels and title

plt.xlabel('Experience")

plt.ylabel('Monthly Income")

plt.title('Correlation between Monthly Income and Experience', fontsize=18, fontwei
plt.legend([ 'Observed Data', 'Predicted Line'])

# Printing the Linear regression value

print(lreg)
[[1. 0.77289325]
[0.77289325 1. 11
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Our correlation coefficient is approximately 0.77 indicates a relatively strong_positive linear

relationship between TotalWorkingYears and Monthlylncome.

Some salaries need to be fixed to be closer to the regression line because the company
experiences a better correlation between salary and experience. The company will have
attractive salary options.

Note that we are not accounting for the company's provision of any further financial

incentives in this research.

| am going to import the statmodels library to work with the other Linear Regression

formula.

4.7.a.2 Linear Regression - Statsmodels

| am going to import the statmodels library to work with the other Linear Regression
formula.

import statsmodels.formula.api as smf
model = smf.ols('MonthlyIncome ~ TotalWorkingYears', data = df_salary).fit()
model.summary ()
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OLS Regression Results

Dep. Variable: Monthlylncome R-squared: 0.597
Model: OLS  Adj. R-squared: 0.597
Method: Least Squares F-statistic: 2178.

Date: Sat, 30 Mar 2024 Prob (F-statistic): 2.73e-292

Time: 00:02:04  Log-Likelihood: -13848.
No. Observations: 1470 AIC: 2.770e+04
Df Residuals: 1468 BIC: 2.771e+04
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t| [0.025 0.975]

Intercept 1227.9353 137.299 8.944 0.000 958.612 1497.259

TotalWorkingYears 467.6584  10.021 46.669 0.000 448.002 487.315

Omnibus: 47.473  Durbin-Watson: 1.993
Prob(Omnibus): 0.000 Jarque-Bera (JB): 79.304
Skew: 0.269 Prob(JB): 6.02e-18

Kurtosis: 4.003 Cond. No. 24.2

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now | have the model that is performing a linear regression analysis to explore the

relationship between the TotalWorkingYears predictor variable and the Monthlylncome.

Let's use the model to create some predictions.

# Using our model to create predictions
# Let's predict our salaries for each experience years and store them into a variat
predl = model.predict(pd.DataFrame(df_salary['TotalWorkingYears']))

print(predl)

0 4969.202583
1 5904 .519406
2 4501.544171
3 4969.202583
4 4033.885759

1465 9178.128289
1466 5436.860994
1467 4033.885759
1468 9178.128289
1469 4033.885759
Length: 1470, dtype: float64

With the fitted linear regression model (model), we predict salaries based on years of

experience. The values are now stored in a variable called predT.
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Let's examine the model's appearance in a scatter plot.

# Regression Line

# X and Y were defined at the beginning, first the scatter then the Line with the ¢
plt.scatter(x, y)

plt.plot(x, predl, 'r")

# Let's add a lLegend to our plot

plt.legend([ 'Observed Data', 'Predicted Line'])

plt.title('Regression Line")

plt.show()

Regression Line
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The outcome of the prediction model is identical to the one we produced with Numpy.

Let's examine the error calculation.

# Error Calculation

resl = y - predl
res_sqrl = resl * resl
msel = np.mean(res_sqrl)
rmsel = np.sqrt(msel)
print(rmsel)

2986.3521316844103

As a gauge of the linear regression model's prediction ability, | computed the root mean
squared error (RMSE). The model computes the residuals, squares them to get the mean
squared error (MSE), and then takes the square root to get the RMSE. A lower RMSE number
indicates greater performance, and it gives information about how well the model matches
the observed data. With a value of 2986.35, this is the average magnitude of the errors
between predicted values and actual values. The model is performing well in terms of
prediction.
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4.7.a.3 Linear Regression - Log Transformation

Let's convert our data using logarithms.

# Transformed data

# Log Transformation

plt.scatter(x = x, y = np.log(y))

np.corrcoef(x, np.log(y))

model2 = smf.ols('np.log(MonthlyIncome) ~ TotalWorkingYears', data=df_salary).fit(
# Adding the Llinear regression Line

plt.plot(x, model2.predict(df_salary), color="red")

# Labels and title

plt.xlabel('Total Working Years')

plt.ylabel('Log of Monthly Income')

plt.title('Linear Regression with Log Transformation')
plt.legend([ 'Observed Data', 'Prognosis Line'])

# Show plot
plt.show()

Linear Regression with Log Transformation
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After giving Salary a log transformation, we can see how Experience and Salary relate to one
another. The correlation coefficient between the two variables is now available, and a linear
regression model is provided to further examine the connection between Experience and the

salary logarithm.

It's recommended to compare the original data to see if the relationship is better
represented on a logarithmic scale. We can interpret the coefficients of the linear regression
model to understand the relationship between 'TotalWorkingYears' and the expected value
of 'Monthlylncome' on the log scale.
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4.7.a.4 Linear Regression - Comparation

Using a residual analysis, | will contrast the log-transformed data with the original data.

# Calculate residuals
residuals = model.resid

# Visualize residuals
plt.
plt.
plt.
plt.
plt.
plt.
plt.

xlabel('Fitted values')
ylabel('Residuals"')
title('Residual Plot")
legend([ 'Observed Data',

show()

axhline(y=0, color='red',

scatter(model.fittedvalues, residuals)

"Prognosis Line'])

linestyle="--")

# Add horizontal Line at y=0

Residual Plot
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The plot shows us the residual values against the predicted values.

# Original model summary
print(model.summary())

# Log-transformed model summary (assuming you've already fit model2)

print(model2.summary())
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OLS Regression Results

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:
Covariance Type:

MonthlyIncome
oLS

Least Squares
Sat, 30 Mar 2024
00:02:05

1470

1468

1

nonrobust

R-squared:

Adj. R-squared:
F-statistic:

Prob (F-statistic):
Log-Likelihood:
AIC:

BIC:

2.73e-292

-13848.
2.770e+04
2.771e+04

Intercept

259
TotalWorkingYears
315

1227.9353

467.6584 10.0

21

958.612 1497.

448.002 487.

Omnibus:
Prob(Omnibus):
Skew:
Kurtosis:

Durbin-Watson:
Jarque-Bera (JB):
Prob(JB):

Cond. No.

24.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s

pecified.

OLS Regression Results

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:
Covariance Type:

np.log(MonthlyInco

Least Squa
Sat, 30 Mar 2
00:02

1

1

nonrob

me)
oLS
res
024
105
470
468

1
ust

1784.
9.04e-256
-899.93
1804.
1814.

Intercept

879
TotalWorkingYears
066

0.0

0.0

21

01

Omnibus:
Prob(Omnibus):
Skew:
Kurtosis:

R-squared:
Adj. R-squared:
F-statistic:
Prob (F-statistic):
Log-Likelihood:
AIC:
BIC:
t P>|t]|
382.037 0.000
42.232 0.000
Durbin-Watson:
Jarque-Bera (JB):
Prob(JB):
Cond. No.

10.779

24.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s

pecified.
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There is more to study about the models, at the time, it is beyond my knowledge, but I am

interested in learning more about them.

4.7.b Attrition Prediction - Survival Model with Kaplan-Meier method

Having ascertained our company's attrition rate, let's investigate the possibility of developing

a machine learning_model that anticipates resignation.

For this analysis | will use the values from the columns ‘Attrition’, 'YearsAtCompany' and
‘AgeRange'.

# Create a data frame with the data we need
df_km_attrition = df_padb[['YearsAtCompany', 'Attrition', 'AgeRange']].copy()
df_km_attrition.head()

YearsAtCompany Attrition AgeRange

0 6 Yes 38 to 47
1 10 No 48 to 57
2 0 Yes 28 to 37
3 8 No 28 to 37
4 2 No 18 to 27

To work with our model, | will encode the values from the 'Attrition' and 'AgeRange'
columns.

# Attrition column
# Encoding the data from Attrition
attrition_ref = {
"Yes": 1,
"No": @
}
# Encoding the values
df_km_attrition['Attrition'] = df_km_attrition['Attrition'].map(attrition_ref)

# AgeRange Column

# Encoding the data from AgeRange

encoded_age_range = pd.get_dummies(df_km_attrition[ ‘AgeRange'], prefix='AgeRange')
# Now I concatenate the new encoded values on a new data frame

df_km_attencoded = pd.concat([df_km_attrition, encoded_age range], axis=1)
df_km_attencoded.drop('AgeRange’, axis='columns' , inplace=True)
df_km_attencoded.head()

YearsAtCompany _Attrition AgeRange_18 AgeRange 28 AgeRange_38 AgeRange 48 AgeRang

to 27 to 37 to 47 to 57
0 6 1 0 0 1 0
1 10 0 0 0 0 1
2 0 1 0 1 0 0
3 8 0 0 1 0 0
4 2 0 1 0 0 0
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Now is the time to compute the survival curves with the Kaplan-MeierFitter.

# Importing the Kaplan-MeierFitter package for the survival analysis
from lifelines import KaplanMeierFitter

# First we need to inicialize the Kaplan-MeierFitter model and we storage into a vc
kmf = KaplanMeierFitter()

# Let's fit the data into the kmf function

kmf.fit(df_km_attencoded[ 'YearsAtCompany'], event_observed = df_km_attencoded[ 'Attr
# Checking the status of our curve

kmf.plot(title="Kaplan-MeierFitter Model, Probability Renunciations")

<Axes: title={'center': 'Kaplan-MeierFitter Model, Probability Renunciations'}, x1
abel="timeline'>

Kaplan-MeierFitter Model, Probability Renunciations

1.0 1 —— KM_estimate

0.8 1

0.6

0.4 1

0.2

0.0

T
0 5 10 15 20 25 30 35 40
timeline

First impressions of the narrative lead us to believe that the first period of quitting_the job

can happen during the first and second years of employment. We need to consider where

the plot takes big_leaps. The second period of resignations is around 10 years at the

company. After that, a period of stability came, until the 25 years at the company when it
starts the retirement period.

To have a better idea, let's include the 'AgeRange’ data.

# Rename the age columns
df_km_attencoded.rename(columns={"AgeRange 18 to 27": "AR18 27", "AgeRange_ 28 to 3J
df_km_attencoded.columns

Index([ 'YearsAtCompany', 'Attrition', 'AR18 27', 'AR28_37', 'AR38_47',
'AR48 57', 'AR58'],
dtype='object")
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otting survival curves for each age range group

age_range in ['AR18_27', 'AR28_37', 'AR38_47', 'AR48 _57', 'AR58']:

# Filter data for each age range group

years_at_work = df_km_attencoded.loc[df_km_attencoded[age_range] == 1, 'YearsAi
attrition = df_km_attencoded.loc[df_km_attencoded[age_range] == 1, 'Attrition'’

# Fit the Kaplan-Meier model for the current age range group
kmf.fit(years_at_work, event_observed=attrition, label=age_range)

# Plot the survival curve for the current age range group
kmf.plot()

# Add Labels and title

plt.
plt.
plt.
plt.

xlabel('Years at the Company')

ylabel('Attrition Probability")

legend(title="Age Range')

title('Kaplan-Meier Survival Curves by Age Range', fontsize=18, fontweight='bol

# Display the plot

plt.

show()

Kaplan-Meier Survival Curves by Age Range
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With the addition of the ‘AgeRange’ values, we now have 5 lines. Each of them shows

different information. For the range of 18 to 27, we can appreciate that the probability of

leaving_the company is at the first year at the company, and then at about nine years. In the

range of 28 to 37, the probability of leaving the company is also at the first year, then ten
years later, and the last one comes when they are 16 or 17 years working fot he company. The
ranges 38 to 47 and 48 to 57 show more stability at the company. For the last range, more

than 58, we have three important breaks: the first year, then at ten years, and the last one at

31 years.

4.8 Conclusion and Observations
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After conducting an exploratory analysis of the database 'WA_Fn-UseC_-HR-Employee-
Attrition', | was able to establish that the organization has a "good balance" between the levels
of education, the gender and the age of the employees. From this point on, the organization
can decide on the diversity policies it deems necessary.

As for the levels of satisfaction, they are at acceptable levels, but it is recommended to pay
attention to the percentage of discomfort, and to take steps to reduce the percent and avoid

problems in the future, especially in jobs that are heavily engaged with their work.

Career plans may need adjustments, because, as can be seen from the redundancies, the
company is losing_ employees in lower age ranks. It could not be measured is the entry of new

employees to have a better picture of the entry and exit of employees.
The salaries showed to be consistent with the levels of the educational level of employees.

The hours devoted to the Training are equal for all departments and are within normal ranges.

Bear in mind that different departments have different numbers of employees and that all
have the same average hours devoted to training.

The company had a good work-family balance for its employees, and there were no significant
abnormalities in the work-family balance. It is recommended to continue with what is being
done.

With regard to the resignations, it was found that most of them could be related to salaries
below average. In addition, people from 18 to 47 showed the highest mobility. If we add the
level of education to the analysis, we can say that the company lost talent. However, it was not

possible to verify whether the company made revenue to compensate for them.

After the descriptive analysis, the next step will be to recreate the time to make a comparison
of the metrics.
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