
HOTEL HR PEOPLE ANALYTICS
Hotel Analysis from a People Analytics perspective.
This project will try to emulate HR analytics to continue practicing my analytical skills.
Also, with this project, I want to strengthen my knowledge in MySql and SQL. I will use
Python and Power BI for the data analysis.

I will start with doing a little of data engineering to design the databases I am going to
work with. I will use Figma to draft the databases and the relationships between each
other. Then I will fill the databases with the data, and later I will start the data analysis.

1. Import libraries

Libraries to manipulate the data
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random
import string
from app_pass import dbpass

Library to deploy charts with the data
import seaborn as sns
import matplotlib.pyplot as plt

Statmodels for predictions
import statsmodels.api as sm
import statsmodels.formula.api as smf

Connect to our MySQL database
import mysql.connector
from sqlalchemy import create_engine

This is to ignore warnings.
import warnings
warnings.filterwarnings('ignore')

2. Working with our databases
Previously, I created the databases I was going to work with. Because part of the data
was difficult to create randomly, I downloaded the databases into an .xlsx file and worked
with it.

I called the file hotel_hranalytics.xlsx, so now it's time to start working with it.

2.1 Employees Table

Let's load our databases
df_rawemp = pd.read_excel('../hotel_hranalytics/hotel_hranalytics.xlsx', sheet_n

In [1]:

In [2]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 1/29

df_rawemp.head()

emp_id Name Surname Birthday Age Gender on_license hotel_id

0 3272 James Smith 1957-08-09 67 M 0 FUESSP

1 3074 John Johnson 1981-11-19 42 M 0 FUESSP

2 6627 Robert Williams 1983-10-15 41 M 0 FUESSP

3 420 Michael Brown 1976-04-05 48 M 0 FUESSP

4 4856 William Jones 1968-11-20 55 M 0 FUESSP

2.2 Hotels Table

df_rawht = pd.read_excel('../hotel_hranalytics/hotel_hranalytics.xlsx', sheet_na

df_rawht.head()

hotel_id Name Location Opening Stars Budget

0 FUESSP Sandy Shores Park 28 03 18.9N-14 19
21.4W

2001-03-
05 4 350000000

1 TFNOBH Ocean Breeze
Haven

28 05 56.5N-16 44
54.6W

1998-10-
05 5 550000000

2 ACECWR Coral Wave Resort 28 51 25.9N-13 47 48.7
W

2000-05-
05 5 480000000

2.3 Hotels Composition Table

df_rawhtcomp = pd.read_excel('../hotel_hranalytics/hotel_hranalytics.xlsx', shee

df_rawhtcomp.head()

hc_id Department Active_employees Emp_with_license Total_employe

0 REFUESSP Reception_Reservations 11 1

1 FLFUESSP Floors_Laundry 35 3

2 KIFUESSP Kitchen 35 3

3 BAFUESSP Bar_Restaurant 31 7

4 ANFUESSP Animation 11 1

2.4 Employees Wages Table

df_rawempwages = pd.read_excel('../hotel_hranalytics/hotel_hranalytics.xlsx', sh

df_rawempwages.head()

Out[2]:

In [3]:

Out[3]:

In [4]:

Out[4]:

In [5]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 2/29

emp_wag_id Price_$_Hour Hours_worked Work_overtime Ovh$_75% Gross_pay

0 3272REFUESSP 14 129 4 10.50 1848.00

1 3074REFUESSP 14 143 3 10.50 2033.50

2 6627REFUESSP 18 135 4 13.50 2484.00

3 420REFUESSP 19 121 11 14.25 2455.75

4 4856REFUESSP 14 132 7 10.50 1921.50

2.5 Workforce Composition Table

df_rawworkforce = pd.read_excel('../hotel_hranalytics/hotel_hranalytics.xlsx', s

df_rawworkforce.head()

wkc_id Department Position years_at_position Entry_date year

0 3272FUESSP Reception_Reservations Staff 1 2023-09-
26

1 3074FUESSP Reception_Reservations Staff 1 2023-04-
29

2 6627FUESSP Reception_Reservations 3rd_Command 4 2014-01-
17

3 420FUESSP Reception_Reservations 3rd_Command 3 2012-10-
25

4 4856FUESSP Reception_Reservations Staff 1 2023-06-
18

2.6 dtypes Testing

I decided to combine all the tables into one big data frame to visualize all the data types
each column has instead of using the dytpes command for testing each table. This is the
only purpose of the table, and it won't be used in further analyses.

If I needed let's put all together
df_combined = pd.concat([df_rawemp, df_rawht, df_rawhtcomp, df_rawworkforce, df_

df_combined.dtypes

Out[5]:

In [6]:

Out[6]:

In []:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 3/29

emp_id object
Name object
Surname object
Birthday datetime64[ns]
Age float64
Gender object
on_license float64
hotel_id object
Location object
Opening object
Stars float64
Budget float64
hc_id object
Department object
Active_employees float64
Emp_with_license float64
Total_employees float64
wkc_id object
Position object
years_at_position float64
Entry_date datetime64[ns]
years_working float64
Staff float64
emp_wag_id object
Price_$_Hour float64
Hours_worked float64
Work_overtime float64
Ovh$_75% float64
Gross_pay float64
Deductions_3% float64
Total_Payment float64
Payment_date datetime64[ns]
dtype: object

After the dtypes testing, we can visualize that some columns needed to change their data
type. The next step will be emphasized to correct those data types, in accordance with
the ones that were established in our Figma sketch.

2.7 Fixing columns dtype

Employees Table
df_rawemp[['Age', 'on_license']].apply(pd.to_numeric)
df_rawemp[['hotel_id']].astype('str')

Hotels Table
df_rawht['Stars'].apply(pd.to_numeric)
df_rawht[['hotel_id']].astype('str')
df_rawht.rename(columns={'Stars': 'Stars_type'}, inplace=True)

Hotel Composition Table
df_rawhtcomp[['Active_employees', 'Emp_with_license', 'Total_employees']].apply(
df_rawhtcomp[['hc_id', 'hotel_id']].astype('str')

Workforce Composition Table
df_rawworkforce[['years_at_position', 'years_working', 'Staff']].apply(pd.to_num
df_rawworkforce[['wkc_id', 'emp_id', 'hotel_id', 'hc_id']].astype('str')

Employees Wages Table
df_rawempwages[['emp_wag_id', 'emp_id', 'hotel_id', 'hc_id']].astype('str')

Out[]:

In [8]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 4/29

df_rawempwages[['Price_$_Hour']].apply(pd.to_numeric)
df_rawempwages.rename(columns={'Ovh$_75%': 'Ovh$_75', 'Deductions_3%': 'Deductio

It was necessary to correct a few column names in order to be similar to the ones created
in the MySQL database.

Let's proceed to check if all the data is correct and fix all minor errors that are required.

df_rawemp.dtypes

emp_id object
Name object
Surname object
Birthday datetime64[ns]
Age int64
Gender object
on_license int64
hotel_id object
dtype: object

df_rawhtcomp.dtypes

hc_id object
Department object
Active_employees int64
Emp_with_license int64
Total_employees int64
hotel_id object
dtype: object

df_rawworkforce = df_rawworkforce.rename(columns={'Position': 'Positions'})
df_rawworkforce.dtypes

wkc_id object
Department object
Positions object
years_at_position int64
Entry_date datetime64[ns]
years_working int64
Staff int64
emp_id int64
hotel_id object
hc_id object
dtype: object

df_rawempwages.dtypes

In [9]:

Out[9]:

In [10]:

Out[10]:

In [11]:

Out[11]:

In [12]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 5/29

emp_wag_id object
Price_$_Hour int64
Hours_worked int64
Work_overtime int64
Ovh$_75 float64
Gross_pay float64
Deductions_3 float64
Total_Payment float64
emp_id int64
hotel_id object
hc_id object
Payment_date datetime64[ns]
dtype: object

#First we let's check for missing values
missing_values = df_rawemp.isnull().sum()
print('Number of missing values: ', missing_values)

Number of missing values: emp_id 0
Name 0
Surname 0
Birthday 0
Age 0
Gender 0
on_license 0
hotel_id 0
dtype: int64

3.1 Let visualizations show what the data has to told us.
Let's begin with something simple. How are our employees distributed by gender?

To answer this question we will use the Employees table.

Let's work with the gender column but firs let's create a variable with the le
emp_length = len(df_rawemp)
print('The total of registries we have at the Employees table is: ', emp_length)

The total of registries we have at the Employees table is: 505

Counting the values by the Gender column
emp_gender = df_rawemp['Gender'].value_counts()
print(emp_gender)

Gender
M 267
F 238
Name: count, dtype: int64

3.1.a Time to visualize the Gender data

To visualize the gender distribution I will use a pie chart.

Preparing the data
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(emp_gender)))
labels = 'Male', 'Female'

Creating the PIE CHART
fig, ax = plt.subplots(figsize=(6, 8))

Out[12]:

In [13]:

In [14]:

In [15]:

In [16]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 6/29

ax.pie(emp_gender, colors=['#FDE74C', '#E3655B'], autopct='%1.1f%%', center=(4,
ax.legend(labels, loc='lower right', title='Genders')
ax.set_title('Gender Distribution', fontsize=16)

plt.show()

The data shows us the distribution by gender in our three hotels. The employees are
distributed, and we have a total of 238 female employees, representing 47,1% of the
total workforce. And for the males, we have 267 employees, 52,9% of the total
workforce.

3.1.b Let's analyze the gender distribution by Departments and Hotels

In order to calculate the gender distribution according to the different departments, it
will be necessary to combine the tables of "Employees" and "Workforce Composition". I
will use the column 'emp_id' to combine both tables.

Preparing the data
df_rawworkforce['emp_id'] = df_rawworkforce['emp_id'].astype('str')
emp_gender_by_dep = pd.merge(df_rawemp, df_rawworkforce, on='emp_id', how='inner
emp_gender_by_dep.head()

In [17]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 7/29

emp_id Name Surname Birthday Age Gender on_license hotel_id_x wkc_

0 3272 James Smith 1957-08-
09 67 M 0 FUESSP 3272FUES

1 3074 John Johnson 1981-11-
19 42 M 0 FUESSP 3074FUES

2 6627 Robert Williams 1983-10-
15 41 M 0 FUESSP 6627FUES

3 420 Michael Brown 1976-04-
05 48 M 0 FUESSP 420FUES

4 4856 William Jones 1968-11-
20 55 M 0 FUESSP 4856FUES

Let's drop the columns we are not going to use
emp_gender_by_dep.drop(columns=['Name', 'Surname', 'Birthday', 'wkc_id', 'years_
emp_gender_by_dep.head()

emp_id Age Gender on_license hotel_id_x Department Positions

0 3272 67 M 0 FUESSP Reception_Reservations Staff

1 3074 42 M 0 FUESSP Reception_Reservations Staff

2 6627 41 M 0 FUESSP Reception_Reservations 3rd_Command

3 420 48 M 0 FUESSP Reception_Reservations 3rd_Command

4 4856 55 M 0 FUESSP Reception_Reservations Staff

Checking for missing values
gender_by_dep_missing_values = emp_gender_by_dep.isnull().sum()
print('The missing values are: ', gender_by_dep_missing_values)

The missing values are: emp_id 0
Age 0
Gender 0
on_license 0
hotel_id_x 0
Department 0
Positions 0
dtype: int64

It's time to visualize our data, gender distribution by Hotel and Departments

Preparing the data
gender_dist = emp_gender_by_dep.groupby(['hotel_id_x', 'Department', 'Gender']).
gender_dist.rename(columns={0: 'Count'}, inplace=True)
print(gender_dist)

Converting the Count column to numeric
gender_dist['Count'] = gender_dist['Count'].astype('int64')

gender_dist['Count'].dtypes

Using Seaborn to create a barplot with FacetGrid

Out[17]:

In []:

Out[]:

In [19]:

In [20]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 8/29

grid = sns.FacetGrid(
 gender_dist,
 col='hotel_id_x',
 height=6,
 aspect=1.5,
 sharey=False
)

Drawing the plot
grid.map_dataframe(
 sns.barplot,
 y='Department',
 x='Count',
 hue='Gender',
 palette=['#E3655B','#FDE74C']
)

Adding the counts to each bar
for ax in grid.axes.flat:
 for container in ax.containers:
 for bar in container:
 bar_value = bar.get_width()
 if bar_value > 0:
 ax.text(
 bar_value + 0.5,
 bar.get_y() + bar.get_height() / 2,
 f"{int(bar_value)}",
 ha='left',
 va='center',
 fontsize=9,
 color='black'
)

Legend and title
grid.add_legend(title='Gender')
grid.legend.set_loc('upper right')
grid.set_titles('Hotel {col_name}')
grid.set_axis_labels('Nº of Employees', 'Departments')
plt.tight_layout()
plt.title('Gender Distribution by Department and Hotel')

plt.show()

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 9/29

 hotel_id_x Department Gender Count
0 ACECWR 3R F 3
1 ACECWR Animation F 12
2 ACECWR Bar_Restaurant F 38
3 ACECWR Floors_Laundry M 38
4 ACECWR Kitchen F 8
5 ACECWR Kitchen M 30
6 ACECWR Other F 6
7 ACECWR Reception_Reservations M 12
8 ACECWR SPA F 6
9 ACECWR Technical_Services F 12
10 FUESSP 3R F 4
11 FUESSP Animation F 12
12 FUESSP Bar_Restaurant F 31
13 FUESSP Bar_Restaurant M 7
14 FUESSP Floors_Laundry M 38
15 FUESSP Kitchen M 38
16 FUESSP Other F 6
17 FUESSP Reception_Reservations M 12
18 FUESSP SPA F 6
19 FUESSP Technical_Services F 12
20 TFNOBH 3R F 4
21 TFNOBH Animation F 12
22 TFNOBH Bar_Restaurant F 41
23 TFNOBH Floors_Laundry M 39
24 TFNOBH Kitchen M 40
25 TFNOBH Other F 6
26 TFNOBH Reception_Reservations M 13
27 TFNOBH SPA F 6
28 TFNOBH Technical_Services F 13

Gender distribution by Department

Preparing the data
gender_by_dep = emp_gender_by_dep.groupby(['Department', 'Gender']).size().reset
print(gender_by_dep)

Creating the barplot
plt.figure(figsize=(12, 8))
ax = sns.barplot(
 data=gender_by_dep,
 x='Count',
 y='Department',
 hue='Gender',
 palette=['#E3655B','#FDE74C'],
 ci=None
)

Adding the counts to each bar
for container in ax.containers:
 ax.bar_label(container, fmt='%d', label_type='edge', fontsize=10, color='bla

In [21]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 10/29

Displaying the plot
plt.title('Gender Distribution by Department', fontsize=16)
plt.xlabel('Number of Employees', fontsize=12)
plt.ylabel('Department', fontsize=12)
plt.legend(title='Gender')
plt.tight_layout()

plt.show()

 Department Gender Count
0 3R F 11
1 Animation F 36
2 Bar_Restaurant F 110
3 Bar_Restaurant M 7
4 Floors_Laundry M 115
5 Kitchen F 8
6 Kitchen M 108
7 Other F 18
8 Reception_Reservations M 37
9 SPA F 18
10 Technical_Services F 37

3.2 Let analyze how our employees are distributed by Age

I will create an age range with the purpose of facilitate the analysis

Creating a function to distribute our employees by age range
def age_range(age):
 if age >= 18 and age <= 27:
 return '18 to 27'
 elif age >= 28 and age <= 37:
 return '28 to 37'
 elif age >= 38 and age <= 47:
 return '38 to 47'
 elif age >= 48 and age <= 57:
 return '48 to 57'

In [22]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 11/29

 else:
 return 'more than 58'

Applying the function to the Age column
emp_age_range = df_rawemp['Age'].apply(lambda x: pd.Series(age_range(x)))

Creating a new column with the Age Range
df_rawemp['Age_range'] = emp_age_range

Let's check the distribution of the age range
age_range_count = df_rawemp['Age_range'].value_counts().sort_index()
total_agerange_count = age_range_count.sum()
percentage = (age_range_count / total_agerange_count) * 100

Creating the Pie Chart
fig, ax = plt.subplots(figsize=(12, 10))
colors = ['#E3655B', '#DB5461', '#FDE74C', '#4C5B5C', '#3891A6']
labels = [f'{age} ({count})' for age, count in zip(age_range_count.index, age_ra
labels_sort = df_rawemp['Age_range'].value_counts().sort_index()
graph_labels = '18 to 27', '28 to 37', '38 to 47', '48 to 57', 'more than 58'

ax.pie(age_range_count, autopct='%1.1f%%', center=(4, 4), wedgeprops={"linewidth

plt.legend(labels, loc='upper right', title='Age Range')

ax.set_title('Age Distribution', fontsize=16)

Text(0.5, 1.0, 'Age Distribution')Out[22]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 12/29

After separating the employees of the three hotels within the age ranges, the following
results were obtained:

Age Range

18 to 27 a total of 67 employees that represent a 13,3%
28 to 37 a total of 106 employees that represent a 21%
38 to 47 a total of 104 employees that represent a 20,6%
48 to 57 a total of 105 employees that represent a 20,8%
More than 58 a total of 123 employees that represent a 24,4%

We can see that the majority of our staff members are above 28 after looking at the
distribution of personnel by age range. 13.3% of our personnel is between the ages of 18
and 27, which indicates that we need to start updating our workforce. It is advised that
future hiring staff concentrate on this age group.

Let's determine which hotels should begin hiring more younger employees.

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 13/29

Age distribution by hotels
agerange_by_hotel = df_rawemp.groupby(['hotel_id', 'Age_range']).size().unstack(
print(agerange_by_hotel)

Creating the Pie Charts
fig, axs = plt.subplots(1, 3, figsize=(18, 6))

colors = ['#E3655B', '#DB5461', '#FDE74C', '#4C5B5C', '#3891A6']

for i, hotel in enumerate(agerange_by_hotel.index):
 ax = axs[i]
 labelsbyhotel = [f'{age} ({count})' for age, count in zip(age_range_count.in
 ax.pie(agerange_by_hotel.loc[hotel], autopct='%1.1f%%', center=(4, 4), wedge
 ax.set_title(f'Age Distribution at Hotel {hotel}', fontsize=14)
 ax.legend(labelsbyhotel, loc='upper right', title='Age Range')

plt.tight_layout()
plt.show()

Age_range 18 to 27 28 to 37 38 to 47 48 to 57 more than 58
hotel_id
ACECWR 17 31 43 38 36
FUESSP 24 35 29 32 46
TFNOBH 26 40 32 35 41

Following an analysis of the age ranges of the three hotels, we have determined that
Sandy Shores Park has the most elderly staff, with 46 employees aged over 58.
Additionally, this hotel has been in business for a shorter period of time thanthe other
two hotels. While the staff at Coral Wave Resort is fine, it is advised to keep a watch on
their group from 38 to 47, because this is the middle of the age ranges, if they are
careless they will end up having the most unbalanced workforce. The hotel with a
balanced workforce is Ocean Breeze Haven.

Let's figure out the average age we have for the hotels. The average working years the
personnel have. And last, how many employees on license does each hotel have?

df_rawemp['Age'].describe().round()

In [23]:

In [24]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 14/29

count 505.0
mean 45.0
std 14.0
min 21.0
25% 33.0
50% 45.0
75% 57.0
max 69.0
Name: Age, dtype: float64

With the purpose to view the hotels names
hotel_names = df_rawht.set_index('hotel_id')['Name']

Let's check the average age of the employees by hotel
avg_age_byhotel = df_rawemp.groupby('hotel_id')['Age'].mean().round()

Let's check the average working years of the employees by hotel
avg_working_years = df_rawworkforce.groupby('hotel_id')['years_working'].mean().

To print the names of the hotels in the results
avg_age_byhotel.index = avg_age_byhotel.index.map(lambda x: f"{x} ({hotel_names[
avg_working_years.index = avg_working_years.index.map(lambda x: f"{x} ({hotel_na

To eliminate the name of the column hotel_id
avg_age_byhotel.index.name = None
avg_working_years.index.name = None

print('The average age of the employees is: ','\n', avg_age_byhotel, '\n\n',
 'The average working years of the employees is: ','\n', avg_working_years, '
)

The average age of the employees is:
 ACECWR (Coral Wave Resort) 45.0
FUESSP (Sandy Shores Park) 45.0
TFNOBH (Ocean Breeze Haven) 44.0
Name: Age, dtype: float64

 The average working years of the employees is:
 ACECWR (Coral Wave Resort) 12.0
FUESSP (Sandy Shores Park) 12.0
TFNOBH (Ocean Breeze Haven) 14.0
Name: years_working, dtype: float64

3.3 Analyzing how many of our employees are on license

Now is time to visualize the employees that are on license. Let's figure out If we have a
significant number of employees on license.

Let's check the number of employees with license
emp_on_license = df_rawemp[(df_rawemp['on_license'] == True)].count()
emp_on_license_byhotel = df_rawemp.groupby('hotel_id')['on_license'].sum()
per_emp_on_license = (emp_on_license['on_license'] / emp_length) * 100

To print the names of the hotels in the results
emp_on_license_byhotel.index = emp_on_license_byhotel.index.map(lambda x: f"{x}

To eliminate the name of the column hotel_id

Out[24]:

In [25]:

In [26]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 15/29

emp_on_license_byhotel.index.name = None

print('The number of employees with license is: ','\n', emp_on_license_byhotel,
 'The total employees with license is: ', emp_on_license['on_license'], '\n\n
 'The percentage of employees with license is: ', per_emp_on_license.round(2)
)

The number of employees with license is:
 ACECWR (Coral Wave Resort) 28
FUESSP (Sandy Shores Park) 18
TFNOBH (Ocean Breeze Haven) 27
Name: on_license, dtype: int64

 The total employees with license is: 73

 The percentage of employees with license is: 14.46 %

Preparing the data to visualize the employees with license
on_license_count = df_rawemp['on_license'].value_counts()
print(on_license_count)

Creating the barplot
fig, ax = plt.subplots(figsize=(6, 8))

labels = 'No', 'Yes'
colors = '#FDE74C', '#E3655B'

ax.bar(labels, on_license_count, color=colors)
ax.bar_label(ax.containers[0], fontsize=10)

plt.title('Employees with License', fontsize=16)
plt.ylabel('Number of Employees')
plt.xlabel('License')
plt.show()

on_license
0 432
1 73
Name: count, dtype: int64

In [27]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 16/29

From a total of 505 employees, only 73 are on leave by license; this represents 14,46% of
the total personnel. The company now will have to determine what percentage will be
considered serious.

It's time to break down the licenses into the three hotels to visualize which hotel has the
most employees on license.

Preparing the data
onlicense_by_hotel = df_rawemp.groupby(['hotel_id', 'on_license']).size().unstac
print(onlicense_by_hotel)

Creating the Pie Charts
fix, axs = plt.subplots(1, 3, figsize=(18, 6))
labels_onlicense = 'No', 'Yes'

for i, hotel in enumerate(onlicense_by_hotel.index):

In [28]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 17/29

 ax = axs[i]
 labels2 = [f'{age} ({count})' for age, count in zip(labels_onlicense, onlice
 ax.pie(onlicense_by_hotel.loc[hotel], autopct='%1.1f%%', center=(4, 4), wedg
 ax.set_title(f'Employees On License by Hotel {hotel}', fontsize=14)
 ax.legend(labels2, loc='upper right', title='License')

plt.tight_layout()
plt.show()

on_license 0 1
hotel_id
ACECWR 137 28
FUESSP 148 18
TFNOBH 147 27

After breaking down the data, it shows that the Coral Wave Resort, with 28 employees,
and Ocean Breeze Haven, with 27 employees, both are the hotels with more staff on
license.

4. Analyzing the Employees Wages Table

We can now examine the annual salary payments since we know how our workforce is
composed. I will start by merging the Employees Wages table with the Workforce
Composition table in order to better comprehend our data. This will enable us to filter the
data by Positions and Departments.

Let's work with the employees wages table
First let merge the workforce composition table with the employees wages table
df_rawempwages['emp_id'] = df_rawempwages['emp_id'].astype('str')
emp_wages_wfc = pd.merge(df_rawempwages, df_rawworkforce, on='emp_id', how='inne
emp_wages_wfc.head()

In [29]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 18/29

emp_wag_id Price_$_Hour Hours_worked Work_overtime Ovh$_75 Gross_pay De

0 3272REFUESSP 14 129 4 10.50 1848.00

1 3074REFUESSP 14 143 3 10.50 2033.50

2 6627REFUESSP 18 135 4 13.50 2484.00

3 420REFUESSP 19 121 11 14.25 2455.75

4 4856REFUESSP 14 132 7 10.50 1921.50

5 rows × 21 columns

With the tables combined, let's drop those columns that we will not use during our
analysis.

Droping the columns we are not going to use
emp_wages_wfc.drop(columns=['hotel_id_y', 'hc_id_y', 'wkc_id', 'years_at_positio
emp_wages_wfc.head()

emp_wag_id Price_$_Hour Hours_worked Work_overtime Ovh$_75 Gross_pay De

0 3272REFUESSP 14 129 4 10.50 1848.00

1 3074REFUESSP 14 143 3 10.50 2033.50

2 6627REFUESSP 18 135 4 13.50 2484.00

3 420REFUESSP 19 121 11 14.25 2455.75

4 4856REFUESSP 14 132 7 10.50 1921.50

Checking for missing values
new_missing_values = emp_wages_wfc.isnull().sum()
print('Number of missing values: ', new_missing_values)

Out[29]:

In [30]:

Out[30]:

In [31]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 19/29

Number of missing values: emp_wag_id 0
Price_$_Hour 0
Hours_worked 0
Work_overtime 0
Ovh$_75 0
Gross_pay 0
Deductions_3 0
Total_Payment 0
emp_id 0
hotel_id_x 0
hc_id_x 0
Payment_date 0
Department 0
Positions 0
dtype: int64

4.1 For the first analysis, let's discover the average price per hour the hotels are paying
to their employees. Also, let's figure out the average hours the employees work. How
much did the hotels pay in salaries over the year?

I will add to the analysis the average over time hours worked by the employees. The
total overtime hours worked by the personnel during the entire year and how much the
hotels paid for all those hours.

avg_hour_price = emp_wages_wfc['Price_$_Hour'].mean().round()
avg_hours_worked = emp_wages_wfc['Hours_worked'].mean().round()
emp_wages_wfc['total_paid_NH'] = emp_wages_wfc['Hours_worked'] * emp_wages_wfc['
total_paid_NH = emp_wages_wfc['total_paid_NH'].sum()
avg_OT_hours_worked = emp_wages_wfc['Work_overtime'].mean().round()
total_OT_hours = emp_wages_wfc['Work_overtime'].sum()
emp_wages_wfc['total_paid_OT'] = emp_wages_wfc['Work_overtime'] * emp_wages_wfc[
total_paid_OT = emp_wages_wfc['total_paid_OT'].sum()

print('The average price per hour: ','€', avg_hour_price, '\n\n',
 'The average hours working by our employees is: ', avg_hours_worked, '\n\n',
 'The total SUM we paid for normal hours is: ', '€', total_paid_NH, '\n\n',
 'The average Over Time hours worked by our employees is: ', avg_OT_hours_wor
 'The total Over Time hours worked by: ', total_OT_hours, '\n\n'
 'The total SUM paid for OverTime hours: ', '€', total_paid_OT
)

The average price per hour: € 15.0

 The average hours working by our employees is: 140.0

 The total SUM we paid for normal hours is: € 12950211

 The average Over Time hours worked by our employees is: 6.0

 The total Over Time hours worked by: 33501

The total SUM paid for OverTime hours: € 382709.25

With a Pie chart we will visualize how the working hours are distributed between normal
and overtime.

Let's visualize the percentage of the total hours worked by the employees
First we need to calculate the total hours worked by the employees

In []:

In [33]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 20/29

total_hours_worked = emp_wages_wfc['Hours_worked'].sum() + emp_wages_wfc['Work_o
per_NH = (emp_wages_wfc['Hours_worked'].sum() / total_hours_worked) * 100
per_OTh = (emp_wages_wfc['Work_overtime'].sum() / total_hours_worked) * 100
print('The total hours worked by our employees is: ', total_hours_worked, '\n\n'
 'Percentage Normal Hours: ', per_NH.round(2), '\n\n',
 'Percentage Over Time Hours: ', per_OTh.round(2)
)

Now that we have the percentage we can visualize them
hours = [per_NH, per_OTh]
colors = ['#3891A6', '#4C5B5C']
labels = ['Normal Hours', 'Over Time Hours']
Creating the PIE CHART
fig, ax = plt.subplots(figsize=(6, 8))
ax.pie(hours, colors=colors, autopct='%1.1f%%', center=(4, 4), wedgeprops={"line
ax.legend(labels, loc='upper left', title='Hours Worked')
ax.set_title('Hours Distribution', fontsize=16)

plt.show()

The total hours worked by our employees is: 882410

 Percentage Normal Hours: 96.2

 Percentage Over Time Hours: 3.8

4.2 How much did each hotel pay in salaries over the year?

Collecting the data to visualize the total paid by the hotels
monthly_payment_by_hotel = emp_wages_wfc.groupby([pd.Grouper(key='Payment_date',

In [34]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 21/29

 'total_paid_NH': 'sum',
}).reset_index()

Creating the lineplot
plt.figure(figsize=(12, 8))
sns.lineplot(
 data=monthly_payment_by_hotel,
 x='Payment_date',
 y='total_paid_NH',
 hue='hotel_id_x',
 palette=['#DB5461', '#FDE74C', '#3891A6'],
 marker='o',
)

for hotel in monthly_payment_by_hotel['hotel_id_x'].unique():
 hotel_data = monthly_payment_by_hotel[monthly_payment_by_hotel['hotel_id_x']
 for x, y in zip(hotel_data['Payment_date'], hotel_data['total_paid_NH']):
 plt.text(x, y, f'{y:.0f}', fontsize=9, ha='center', va='bottom')

plt.title('Monthly Payment Distribution by hotel', fontsize=16)
plt.xlabel('Month')
plt.ylabel('Total Paid (€)')
plt.xticks(rotation=45)
plt.legend(title='Hotels ID')
plt.tight_layout()

plt.show()

According to our data, Ocean Breeze Haven is the hotel that pays more in salaries.
Sandy Shores Park comes next, and this hotel likewise pays more consistently. Last but
not least is Coral Wave Resort, which has the lowest payments and has seen a decline
since the year started.

To see the total amount of wages paid by the three hotels, let's aggregate all the data.
First, the total paid for nomal hours and later, the total paid for overtime hours.

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 22/29

Collecting the data to visualize the total paid by the hotels in normal hours
monthly_payment = emp_wages_wfc.groupby(pd.Grouper(key='Payment_date', freq='M')

Creating the lineplot
plt.figure(figsize=(12, 8))
sns.lineplot(
 data=monthly_payment,
 x='Payment_date',
 y='total_paid_NH',
 palette=['#3891A6'],
 marker='o',
)

for hotel in monthly_payment:
 hotel_data = monthly_payment
 for x, y in zip(hotel_data['Payment_date'], hotel_data['total_paid_NH']):
 plt.text(x, y, f'{y:.0f}', fontsize=9, ha='center', va='bottom')

plt.title('Monthly Total Payment Distribution', fontsize=16)
plt.xlabel('Month')
plt.ylabel('Total Paid (€)')
plt.xticks(rotation=45)
plt.tight_layout()

plt.show()

The data shows that March registered the lowest payment in salaries with a total of €
1.066.190 and the highest paid in salaries is May with a total € 1.087.819

Let's see what the overtime hours have to show us.

Collecting the data to visualize the total paid by the hotels in Over Time hou
monthly_payment_by_hotel_ot = emp_wages_wfc.groupby([pd.Grouper(key='Payment_dat
 'total_paid_OT': 'sum',

In [35]:

In [36]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 23/29

}).reset_index()

Creating the lineplot
plt.figure(figsize=(12, 8))
sns.lineplot(
 data=monthly_payment_by_hotel_ot,
 x='Payment_date',
 y='total_paid_OT',
 hue='hotel_id_x',
 palette=['#DB5461', '#FDE74C', '#3891A6'],
 marker='o',
)

for hotel in monthly_payment_by_hotel_ot['hotel_id_x'].unique():
 hotel_data = monthly_payment_by_hotel_ot[monthly_payment_by_hotel_ot['hotel_
 for x, y in zip(hotel_data['Payment_date'], hotel_data['total_paid_OT']):
 plt.text(x, y, f'{y:.0f}', fontsize=9, ha='center', va='bottom')

plt.title('Monthly Payment Distribution by hotel Overtime Hours', fontsize=16)
plt.xlabel('Month')
plt.ylabel('Total Paid (€)')
plt.xticks(rotation=45)
plt.legend(title='Hotels ID')
plt.tight_layout()

plt.show()

The following conclusion may be drawn from the line plot: Ocean Breeze Haven is the
hotel that paid more for overtime hours than the other two. In January, Sandy Shores
Park recorded their highest payment, totaling €11,242. Meanwhile, with a total of
€12,218 in December, Coral Wave Resort recorded their biggest payment. Last but not
least, Ocean Breeze Haven began to boost overtime compensation in May and reached a
peak in December, totaling €12,560.0.

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 24/29

Now is time to visualize the sum of the total paid on overtime hours for the three hotels.

Collecting the data to visualize the total paid between the hotels in Over Tim
monthly_payment_ot = emp_wages_wfc.groupby(pd.Grouper(key='Payment_date', freq='

Creating the lineplot
plt.figure(figsize=(12, 8))
sns.lineplot(
 data=monthly_payment_ot,
 x='Payment_date',
 y='total_paid_OT',
 palette=['#3891A6'],
 marker='o',
)

for hotel in monthly_payment_ot:
 hotel_data = monthly_payment_ot
 for x, y in zip(hotel_data['Payment_date'], hotel_data['total_paid_OT']):
 plt.text(x, y, f'{y:.0f}', fontsize=9, ha='center', va='bottom')

plt.title('Monthly Total Payment Overtime Hours Distribution', fontsize=16)
plt.xlabel('Month')
plt.ylabel('Total Paid (€)')
plt.xticks(rotation=45)
plt.tight_layout()

plt.show()

The data indicates that the total amount paid for extra hours decreased between January
and June, reaching the minimum payout of €30,080. From then on, the total amount of
overtime payments began to rise, peaking at €34,475 in December.

It is important to investigate whether the growth is seasonal or occurred due to a lack of
personnel for the operation.

In [37]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 25/29

Let's continue with our analysis. Now is time to filter our data by Departments.

Let's check the total payment by department and month
emp_wages_wfc['Payment_month'] = emp_wages_wfc['Payment_date'].dt.strftime('%B')

month_order = ['January', 'February', 'March', 'April', 'May', 'June',
 'July', 'August', 'September', 'October', 'November', 'December']

heatmap_pivot = emp_wages_wfc.pivot_table(index='Department', columns='Payment_m
heatmap_pivot = heatmap_pivot.reindex(columns=month_order)
print(heatmap_pivot)

Creating the heatmap
plt.figure(figsize=(12, 8))
sns.color_palette("mako", as_cmap=True)
sns.heatmap(heatmap_pivot, annot=True, fmt=".0f", cbar_kws={'label': 'Total Paym

plt.title('Total Payment by Department and Month', fontsize=16)
plt.ylabel('Departments')
plt.xlabel('Months')
plt.xticks(rotation=45)
plt.show()

Payment_month January February March April \
Department
3R 23788.0375 25218.5450 24951.7950 24210.7150
Animation 75262.0575 76100.8650 76694.5050 76639.7000
Bar_Restaurant 243748.3900 242044.1000 242306.9700 240518.0475
Floors_Laundry 234890.1075 237591.0725 235397.6600 238962.1675
Kitchen 239475.5400 241929.8825 235661.5000 238551.6150
Other 56590.5275 56225.5650 52591.7025 57435.8825
Reception_Reservations 82443.4525 81381.3025 82415.5650 85662.1550
SPA 39957.4525 39382.4850 39308.5225 40429.6000
Technical_Services 80320.3650 77896.0925 76148.3950 78421.3475

Payment_month May June July August \
Department
3R 24819.8750 24660.5525 24729.6650 23719.4100
Animation 78262.2675 76263.5825 76848.9775 77691.9075
Bar_Restaurant 244199.9250 239861.8425 240631.7800 239864.0250
Floors_Laundry 238797.0250 237845.6975 240466.8800 239030.5525
Kitchen 240551.9975 241796.5075 240427.8375 241041.1200
Other 56404.0450 53803.7175 57132.7575 55454.1725
Reception_Reservations 82340.1475 83753.6800 82323.1725 82068.7900
SPA 41678.9600 40275.8550 38823.7650 40522.9625
Technical_Services 78530.9575 77630.7975 77634.9200 80792.2700

Payment_month September October November December
Department
3R 25311.1800 23944.4500 25051.4625 24647.7000
Animation 76688.2000 76275.2225 75959.2450 77702.8200
Bar_Restaurant 242982.3325 241844.7650 242111.2725 241070.7050
Floors_Laundry 236468.5400 237566.8225 234701.4425 235476.7150
Kitchen 243247.1425 244014.4125 240852.4550 237833.5725
Other 55472.8450 56411.8050 52620.3175 56609.6850
Reception_Reservations 82405.6225 82912.2050 82731.7850 82755.0650
SPA 40678.4050 39915.7425 40930.6050 40284.5850
Technical_Services 78041.1075 79675.5575 79038.0250 77462.7450

In [38]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 26/29

When we analyze the data filtered by Departments we can visualize that "Bar &
Restaurant", "Floors & Laundry", and "Kitchen", are the three departments that
demand the largest part of the budget. Then "Technical Services", "Reception &
Reservations", and "Animation" are the following departments with a middle-low
demand of the budget. All the rest share a small part of the budget.

For the last, let's figure out the average salary that the hotels are paying in general and
filtered by departments

Average Salary
avg_salary = emp_wages_wfc['Total_Payment'].mean().round(2)
avg_salary_by_hotel = emp_wages_wfc.groupby('hotel_id_x')['Total_Payment'].mean(
avg_salary_by_department = emp_wages_wfc.groupby('Department')['Total_Payment'].

avg_salary_by_hotel.index = avg_salary_by_hotel.index.map(lambda x: f"{x} ({hote
avg_salary_by_hotel.index.name = None
avg_salary_by_department.index.name = None

print('The Total Average Salary is: €', avg_salary, '\n\n',
 'The Average Salary by Hotel is: ', '\n',avg_salary_by_hotel, '\n\n',
 'The Average Salary by Department is: ', '\n', avg_salary_by_department)

In [39]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 27/29

The Total Average Salary is: € 2134.15

 The Average Salary by Hotel is:
 ACECWR (Coral Wave Resort) 2108.51
FUESSP (Sandy Shores Park) 2162.40
TFNOBH (Ocean Breeze Haven) 2131.51
Name: Total_Payment, dtype: float64

 The Average Salary by Department is:
 3R 2235.25
Animation 2130.53
Bar_Restaurant 2066.37
Floors_Laundry 2063.18
Kitchen 2072.83
Other 3086.82
Reception_Reservations 2236.92
SPA 2232.36
Technical_Services 2120.70
Name: Total_Payment, dtype: float64

5. Loading the data to MySQL

The data type is now corrected and transformed. It's time to upload the data into
"hrhotelpa" that is what our database is called in MySQL. I will use Python to upload all
the data to their corresponding table. Remember we have created the tables using
PopSQL.

Let's start working with MySQL. We are required to connect to MySQL and later create a
cursor to work with the queries.

Let's create the connection to MySQL
try:

 db = mysql.connector.connect(
 host = "localhost",
 user = "root",
 password = dbpass
)
 print("Connection established")
 # Creating the cursor to execute queries
 cursor = db.cursor()

except mysql.connector.Error as err:
 print("An error occurred: ", err)

Connection established

Creating a enginge connection
hostname = "localhost"
database = "hrhotelpa"
username = "root"
password = dbpass

engine = create_engine("mysql+pymysql://{user}:{pw}@{host}/{db}".format(host=hos

Add the databases to MySQL
df_rawht.to_sql('Hotels', engine, if_exists='append', index=False)
df_rawemp.to_sql('Employees', engine, if_exists='append', index=False)

In [40]:

In [41]:

In [42]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 28/29

df_rawhtcomp.to_sql('Hotel_Composition', engine, if_exists='append', index=Fal
df_rawworkforce.to_sql('Workforce_Composition', engine, if_exists='append', in
df_rawempwages.to_sql('Employees_Wages', engine, if_exists='append', index=Fal

Now... that all the data have been uploaded to our MySQL database, it's time to close our
connection.

cursor.close()
db.close()

In [43]:

3/2/25, 16:11 hhanalysis

file:///C:/Users/imgal/OneDrive/Escritorio/PA/hhanalysis.html 29/29

