
HOTEL BOOKINGS ANALYTICS
Analize hotel bookings.
The data is from Kaggle:

User: MOJTABA

Title: Hotel Booking - Hotel booking demand datasets(Data in Brief:2019)

Link: https://www.kaggle.com/datasets/mojtaba142/hotel-booking

For this project, I will analyze hotel bookings to continue practicing my analytical skills using
my knowledge of Python and Power BI. Machine learning techniques will be applied where
possible.

I will work with the following files:

hotel_booking_mojtaba.csv

1. Import libraries

2. Importing our data file
Let's import the file 'hotel_booking_mojtaba.csv' to start the analysis. This is .csv file. First, I
will clean and prepare the data for the analysis. I will look for insights to help the
stakeholders make better data-driven decisions.

In []: # Libraries to manipulate the data
import pandas as pd
import numpy as np

Library to deploy charts with the data
import seaborn as sns
import matplotlib.pyplot as plt

Statmodels for predictions
import statsmodels.api as sm
import statsmodels.formula.api as smf

This is to ignore warnings.
import warnings
warnings.filterwarnings('ignore')

In []: df_rawdata = pd.read_csv('../hotel_bookings/csv_files/hotel_booking_mojtaba.csv')
df_rawdata.head(5)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 1/36

https://www.kaggle.com/datasets/mojtaba142/hotel-booking

hotel is_canceled lead_time arrival_date_year arrival_date_month arrival_date_week_number

0 Resort
Hotel 0 342 2015 July 27

1 Resort
Hotel 0 737 2015 July 27

2 Resort
Hotel 0 7 2015 July 27

3 Resort
Hotel 0 13 2015 July 27

4 Resort
Hotel 0 14 2015 July 27

5 rows × 36 columns

2.1 Cleaning the data

Now it's time to view how the data is composed, check for missing values, and select the
data I will be working with. Once the data is ready for analysis, I will change the name of the
data frame, which is now called 'df_rawdata'.

Out[]:

In []: df_rawdata.info()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 2/36

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119390 entries, 0 to 119389
Data columns (total 36 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 hotel 119390 non-null object
 1 is_canceled 119390 non-null int64
 2 lead_time 119390 non-null int64
 3 arrival_date_year 119390 non-null int64
 4 arrival_date_month 119390 non-null object
 5 arrival_date_week_number 119390 non-null int64
 6 arrival_date_day_of_month 119390 non-null int64
 7 stays_in_weekend_nights 119390 non-null int64
 8 stays_in_week_nights 119390 non-null int64
 9 adults 119390 non-null int64
 10 children 119386 non-null float64
 11 babies 119390 non-null int64
 12 meal 119390 non-null object
 13 country 118902 non-null object
 14 market_segment 119390 non-null object
 15 distribution_channel 119390 non-null object
 16 is_repeated_guest 119390 non-null int64
 17 previous_cancellations 119390 non-null int64
 18 previous_bookings_not_canceled 119390 non-null int64
 19 reserved_room_type 119390 non-null object
 20 assigned_room_type 119390 non-null object
 21 booking_changes 119390 non-null int64
 22 deposit_type 119390 non-null object
 23 agent 103050 non-null float64
 24 company 6797 non-null float64
 25 days_in_waiting_list 119390 non-null int64
 26 customer_type 119390 non-null object
 27 adr 119390 non-null float64
 28 required_car_parking_spaces 119390 non-null int64
 29 total_of_special_requests 119390 non-null int64
 30 reservation_status 119390 non-null object
 31 reservation_status_date 119390 non-null object
 32 name 119390 non-null object
 33 email 119390 non-null object
 34 phone-number 119390 non-null object
 35 credit_card 119390 non-null object
dtypes: float64(4), int64(16), object(16)
memory usage: 32.8+ MB

3 Data Cleaning
I will delete some columns as they are not necessary for the analysis. The columns that store
the data of the customers are the ones I will delete.

I will call the new dataframe as 'df_hb'.

In []: # Making a copy of our dataframe
df_hb = df_rawdata.copy()
df_hb.columns

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 3/36

Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
 'arrival_date_month', 'arrival_date_week_number',
 'arrival_date_day_of_month', 'stays_in_weekend_nights',
 'stays_in_week_nights', 'adults', 'children', 'babies', 'meal',
 'country', 'market_segment', 'distribution_channel',
 'is_repeated_guest', 'previous_cancellations',
 'previous_bookings_not_canceled', 'reserved_room_type',
 'assigned_room_type', 'booking_changes', 'deposit_type', 'agent',
 'company', 'days_in_waiting_list', 'customer_type', 'adr',
 'required_car_parking_spaces', 'total_of_special_requests',
 'reservation_status', 'reservation_status_date', 'name', 'email',
 'phone-number', 'credit_card'],
 dtype='object')

Number of missing values: hotel 0
is_canceled 0
lead_time 0
arrival_date_year 0
arrival_date_month 0
arrival_date_week_number 0
arrival_date_day_of_month 0
stays_in_weekend_nights 0
stays_in_week_nights 0
adults 0
children 4
babies 0
meal 0
country 488
market_segment 0
distribution_channel 0
is_repeated_guest 0
previous_cancellations 0
previous_bookings_not_canceled 0
reserved_room_type 0
assigned_room_type 0
booking_changes 0
deposit_type 0
agent 16340
company 112593
days_in_waiting_list 0
customer_type 0
adr 0
required_car_parking_spaces 0
total_of_special_requests 0
reservation_status 0
reservation_status_date 0
name 0
email 0
phone-number 0
credit_card 0
dtype: int64

3.1 Some observations

I discovered that the columns 'country', 'agent', and 'company' are the ones with the most
missing values. I recommend for a future, to fill the data with the agents that are bringing
the most customers to the hotels. Gathering this information will help to create special
discounts for each of them.

Out[]:

In []: # Checking for missing values
missing_values = df_hb.isnull().sum()
print('Number of missing values: ', missing_values)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 4/36

Because I want to work with the 'country' column, I will fill in the missing values with the
code 'OTR'. I want to analyze from which country the customers are most.

I will delete those four missing values from the column 'children'; they will not affect our
analysis.

Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
 'arrival_date_month', 'arrival_date_week_number',
 'arrival_date_day_of_month', 'stays_in_weekend_nights',
 'stays_in_week_nights', 'adults', 'children', 'babies', 'meal',
 'country', 'market_segment', 'distribution_channel',
 'is_repeated_guest', 'reserved_room_type', 'assigned_room_type',
 'booking_changes', 'deposit_type', 'customer_type', 'adr',
 'required_car_parking_spaces', 'total_of_special_requests',
 'reservation_status', 'reservation_status_date'],
 dtype='object')

Number of missing values: hotel 0
is_canceled 0
lead_time 0
arrival_date_year 0
arrival_date_month 0
arrival_date_week_number 0
arrival_date_day_of_month 0
stays_in_weekend_nights 0
stays_in_week_nights 0
adults 0
children 0
babies 0
meal 0
country 0
market_segment 0
distribution_channel 0
is_repeated_guest 0
reserved_room_type 0
assigned_room_type 0
booking_changes 0
deposit_type 0
customer_type 0
adr 0
required_car_parking_spaces 0
total_of_special_requests 0
reservation_status 0
reservation_status_date 0
dtype: int64

In []: # Filling the missing values in the 'country' column
df_hb['country'].fillna('OTR', inplace=True)

Dropping columns that will not be used in the analysis
df_hb.drop(['previous_cancellations', 'previous_bookings_not_canceled', 'days_in_wa

df_hb.columns

Out[]:

In []: # Removing those four missing values from the column 'children'
df_hb.dropna(subset=['children'], inplace=True)

missing_values2 = df_hb.isnull().sum()
print('Number of missing values: ', missing_values2)

In []: df_hb_lens = len(df_hb)
print('Number of rows in the dataframe is: ', df_hb_lens)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 5/36

Number of rows in the dataframe is: 119386

4 Working with the data
With the data clean and ready for analysis, it is time to generate the insights that will help
our stakeholders make better data-driven decisions.

4.1 Filter the data

I will separate the data into two categories: City Hotel and a Resort Hotel. Later, I will
compare them together to understand their tendencies and seasons.

Let's create the two dataframes.

hotel is_canceled lead_time arrival_date_year arrival_date_month arrival_date_week_numb

40060 City
Hotel 0 6 2015 July

40061 City
Hotel 1 88 2015 July

40062 City
Hotel 1 65 2015 July

40063 City
Hotel 1 92 2015 July

40064 City
Hotel 1 100 2015 July

5 rows × 27 columns

In []: # CITY HOTEL
df_hb_CH = df_hb.groupby(by=['hotel']).get_group('City Hotel')

df_hb_CH.head(5)

Out[]:

In []: # RESORT HOTEL
df_hb_RH = df_hb.groupby(by=['hotel']).get_group('Resort Hotel')

df_hb_RH.head(5)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 6/36

hotel is_canceled lead_time arrival_date_year arrival_date_month arrival_date_week_number

0 Resort
Hotel 0 342 2015 July 27

1 Resort
Hotel 0 737 2015 July 27

2 Resort
Hotel 0 7 2015 July 27

3 Resort
Hotel 0 13 2015 July 27

4 Resort
Hotel 0 14 2015 July 27

5 rows × 27 columns

Out[]:

In []: # First, let's figure out which hotel got more activity by year
bookings_activity = df_hb.groupby(['arrival_date_year','hotel']).size().unstack()
print(bookings_activity)

Total and percentage variables to use on our charts
total_bk_count = bookings_activity.sum()
canceled_percentage = (bookings_activity / total_bk_count) * 100

Extracting values to create the bar chart
years = bookings_activity.index
ch_count = bookings_activity['City Hotel']
rh_count = bookings_activity['Resort Hotel']

Chart size
fig, ax = plt.subplots(figsize=(12, 6))

Positions for the bars
r1 = range(len(years))
r2 = [x + 0.35 for x in r1]

Bars
bar1 = ax.bar(r1, ch_count, color='blue', label='City Hotel')
bar2 = ax.bar(r2, rh_count, color='orange', label='Resort Hotel')

Legends
ax.set_xlabel('Year', fontweight='bold')
ax.set_ylabel('Number of Bookings', fontweight='bold')
ax.set_title('Reservations Distribution over Years', fontsize=16, fontweight='bold'
ax.set_xticks([r + 0.35/2 for r in range(len(years))])
ax.set_xticklabels(years)
ax.legend()

Adding the counts over the bars
for bar in bar1:
 height = bar.get_height()
 ax.text(bar.get_x() + bar.get_width()/2.0, height, f'{int(height)}', ha='center

for bar in bar2:
 height = bar.get_height()
 ax.text(bar.get_x() + bar.get_width()/2.0, height, f'{int(height)}', ha='center
plt.show()

ax = bookings_activity.plot.bar(rot=0)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 7/36

hotel City Hotel Resort Hotel
arrival_date_year
2015 13678 8314
2016 38140 18567
2017 27508 13179

4.2 City Hotel Analysis

I will fix the values in the column 'is_canceled'. I will replace the 0 and 1 for the values where
0 = canceled and 1 = not canceled. I'm aware I can do this step earlier, but for the purpose
of practicing, I decided to do it twice, one time for each dataframe.

Let's go there

40060 canceled
40061 not canceled
40062 not canceled
40063 not canceled
40064 not canceled
Name: is_canceled, dtype: object

4.2.a Canceled Reservations

This database has data for reservations from the years 2015, 2016, and 2017. So, first, I will
look at the cancellations as a total of those 3 years, and then I will separate the data
individually by year.

It will allow stakeholders to know the overall number of cancellations and then be able to
compare by year.

In []: # Changing the values
cancel = {
 0: 'canceled',
 1:'not canceled'
}

df_hb_CH['is_canceled'] = df_hb_CH['is_canceled'].map(cancel)

df_hb_CH['is_canceled'].head(5)

Out[]:

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 8/36

canceled 46228
not canceled 33098
Name: is_canceled, dtype: int64

In []: # Counting the canceled or not canceled reservations values and storage them into a
canceled_counts = df_hb_CH['is_canceled'].value_counts()
print(canceled_counts)

Total and percentage variables to use on our charts
total_count = canceled_counts.sum()
canceled_percentage = (canceled_counts / total_count) * 100

labels = canceled_counts.index
Using a function to create the labels
labels = [f'{canceled} ({count})' for canceled, count in zip(canceled_counts.index,

Chart size
fig, ax = plt.subplots(figsize=(6, 9))

Chart generation
plt.pie(canceled_counts, labels=labels, autopct='%1.1f%%')
plt.legend(title='Reservations')
ax.set_title('Reservations Distribution over Three Years', fontsize=16, fontweight=
plt.axis('equal')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 9/36

The data shows that over the past three years, there have been more canceled reservations,
with a total percentage of 58.3%.

It is recommended to try to understand what is causing the cancellations. This will help you
better understand your clients, create promotions to attract them, and reduce the
cancellation ratio.

Let's analyze which of the three years shows the most canceled reservations.

In []: # Separating the cancellations by years
canceled_by_years_count = df_hb_CH.groupby('arrival_date_year', group_keys=False)[[
print(canceled_by_years_count)

Plotting the data
fig, axs = plt.subplots(1, 3, figsize=(18, 6))

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 10/36

is_canceled canceled not canceled
arrival_date_year
2015 7678 6000
2016 22733 15407
2017 15817 11691

4.3 Resort Hotel Analysis

Because this is a practice project, I will perform the same analysis on the Resort Hotel. I will
fix the values in the column 'is_canceled'. I will replace the 0 and 1 for the values where 0 =
canceled and 1 = not canceled. I'm aware I can do this step earlier, but for the purpose of
practicing, I decided to do it twice, one time for each dataframe.

Let's start working with the data.

0 canceled
1 canceled
2 canceled
3 canceled
4 canceled
Name: is_canceled, dtype: object

4.3.a Canceled Reservations

This database has data for reservations from the years 2015, 2016, and 2017. So, first, I will
look at the cancellations as a total of those 3 years, and then I will separate the data
individually by year.

Creating the labels
for i, year in enumerate(canceled_by_years_count.index):
 data = canceled_by_years_count.loc[year]
 labels = [f"{status.capitalize()} ({count})" for status, count in data.items()]
 axs[i].pie(data, labels=labels, autopct='%1.1f%%')
 axs[i].set_title(f'Reservations Distribution {year}')

plt.tight_layout()
plt.show()

In []: # Changing the values
cancel = {
 0: 'canceled',
 1:'not canceled'
}

df_hb_RH['is_canceled'] = df_hb_RH['is_canceled'].map(cancel)

df_hb_RH['is_canceled'].head(5)

Out[]:

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 11/36

It will allow stakeholders to know the overall number of cancellations and then be able to
compare by year.

canceled 28938
not canceled 11122
Name: is_canceled, dtype: int64

In []: # Counting the canceled or not canceled reservations values and storage them into a
canceled_counts = df_hb_RH['is_canceled'].value_counts()
print(canceled_counts)

Total and percentage variables to use on our charts
total_count = canceled_counts.sum()
canceled_percentage = (canceled_counts / total_count) * 100

labels = canceled_counts.index
Using a function to create the labels
labels = [f'{canceled} ({count})' for canceled, count in zip(canceled_counts.index,

Chart size
fig, ax = plt.subplots(figsize=(6, 9))

Chart generation
plt.pie(canceled_counts, labels=labels, autopct='%1.1f%%')
plt.legend(title='Reservations')
ax.set_title('Reservations Distribution over Three Years', fontsize=16, fontweight=
plt.axis('equal')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 12/36

The data shows that over the past three years, there have been more canceled reservations,
with a total percentage of 72.2%.

Let's analyze which of the three years shows the most canceled reservations.

In []: # Separating the cancellations by years
canceled_by_years_count = df_hb_RH.groupby('arrival_date_year', group_keys=False)[[
print(canceled_by_years_count)

Plotting the data
fig, axs = plt.subplots(1, 3, figsize=(18, 6))

Creating the labels
for i, year in enumerate(canceled_by_years_count.index):
 data = canceled_by_years_count.loc[year]
 labels = [f"{status.capitalize()} ({count})" for status, count in data.items()]

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 13/36

is_canceled canceled not canceled
arrival_date_year
2015 6176 2138
2016 13637 4930
2017 9125 4054

By analyzing both hotels, CITY and RESORT, it can be seen that the RESORT has a higher
percentage of cancellations, with a total of 72.2% against a 58.3% of the CITY hotel.
However, when I analyzed the cancellations by year, I observed a slight decrease in
cancellations at the RESORT can be observed over the years, as opposed to the CITY hotel
that showed an increase in the last year.

4.4 What affects Cancellations?

For this analysis, I will create a new database with the columns hotel, is_canceled, lead_time,
market_segment, and customer_type, to examine and understand, What is causing the
cancellations?

Let's create our new database to work with.

4.4.a New Database

hotel is_canceled lead_time market_segment customer_type arrival_date_year

0 Resort Hotel 0 342 Direct Transient 2015

1 Resort Hotel 0 737 Direct Transient 2015

2 Resort Hotel 0 7 Direct Transient 2015

3 Resort Hotel 0 13 Corporate Transient 2015

4 Resort Hotel 0 14 Online TA Transient 2015

 axs[i].pie(data, labels=labels, autopct='%1.1f%%')
 axs[i].set_title(f'Reservations Distribution {year}')

plt.tight_layout()
plt.show()

In []: # Creating the new data structure
df_cancellations = df_hb[['hotel','is_canceled','lead_time','market_segment','custo

df_cancellations.head(5)

Out[]:

In []: df_cancellations.dtypes

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 14/36

hotel object
is_canceled int64
lead_time int64
market_segment object
customer_type object
arrival_date_year int64
dtype: object

With the new database, let's visualize distributions and relationships between variables.

I will use the values from the column 'lead_time' into a histogram to visualize the number of
days that elapsed between the entering date and the arrival date. The histogram will show
the distribution of a variable, counting the number of observations.

Out[]:

In []: ax = sns.histplot(df_cancellations['lead_time'], bins=30, kde=True)
ax.lines[0].set_color('crimson')
plt.title('Distribution of Lead Time')
plt.show()

In []: # Cancellation rate by market segment

sns.barplot(x='is_canceled', y='market_segment', data=df_cancellations)
plt.title('Cancellation Rate by Market Segment')
plt.xlabel('Cancellations')
plt.ylabel('Segment')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 15/36

4.4.b Analyzing the impact of the variables used

In []: # Cancellation rate by customer type
sns.barplot(x='customer_type', y='is_canceled', data=df_cancellations)
plt.title('Cancellation Rate by Customer Type')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 16/36

Is it time to use a machine learning model to understand which of our variables are affecting
the cancellations? I will use a logistic regression model to understand the relationship between
the data in the columns 'is_canceled', 'lead_time', 'market_segment', and'customer_type'.

Optimization terminated successfully.
 Current function value: 0.563430
 Iterations 6
 Logit Regression Results
==
Dep. Variable: is_canceled No. Observations: 119386
Model: Logit Df Residuals: 119375
Method: MLE Df Model: 10
Date: Tue, 25 Jun 2024 Pseudo R-squ.: 0.1452
Time: 15:02:18 Log-Likelihood: -67266.
converged: True LL-Null: -78695.
Covariance Type: nonrobust LLR p-value: 0.000
==
=====================
 coef std err z P>|z|
[0.025 0.975]
--

Intercept -2.3478 0.163 -14.375 0.000
-2.668 -2.028
C(market_segment)[T.Complementary] -0.7135 0.192 -3.711 0.000
-1.090 -0.337
C(market_segment)[T.Corporate] 0.0173 0.162 0.106 0.915
-0.301 0.335
C(market_segment)[T.Direct] -0.7147 0.160 -4.462 0.000
-1.029 -0.401
C(market_segment)[T.Groups] 1.8303 0.160 11.443 0.000
1.517 2.144
C(market_segment)[T.Offline TA/TO] 0.3801 0.159 2.388 0.017
0.068 0.692
C(market_segment)[T.Online TA] 0.2978 0.159 1.879 0.060
-0.013 0.608
C(customer_type)[T.Group] -0.4647 0.149 -3.126 0.002
-0.756 -0.173
C(customer_type)[T.Transient] 1.1394 0.041 27.881 0.000
1.059 1.220
C(customer_type)[T.Transient-Party] -0.6750 0.043 -15.556 0.000
-0.760 -0.590
lead_time 0.0055 7.26e-05 76.162 0.000
0.005 0.006
==
=====================

After the model has been developed and presented, it is necessary to comprehend the
significance of every variable.

In []: # First let's create our logistic regression model
cancellation_model = smf.logit('is_canceled ~ lead_time + C(market_segment) + C(cus

Model Sypnosis
print(cancellation_model.summary())

In []: # Extracting the values and coefficients
cancellation_coef = cancellation_model.params
cancellation_values = cancellation_model.pvalues

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 17/36

Coefficients:
Intercept -2.347786
C(market_segment)[T.Complementary] -0.713530
C(market_segment)[T.Corporate] 0.017277
C(market_segment)[T.Direct] -0.714733
C(market_segment)[T.Groups] 1.830286
C(market_segment)[T.Offline TA/TO] 0.380110
C(market_segment)[T.Online TA] 0.297807
C(customer_type)[T.Group] -0.464664
C(customer_type)[T.Transient] 1.139408
C(customer_type)[T.Transient-Party] -0.675040
lead_time 0.005531
dtype: float64

P-values:
Intercept 7.434710e-47
C(market_segment)[T.Complementary] 2.063348e-04
C(market_segment)[T.Corporate] 9.152015e-01
C(market_segment)[T.Direct] 8.137130e-06
C(market_segment)[T.Groups] 2.546703e-30
C(market_segment)[T.Offline TA/TO] 1.694970e-02
C(market_segment)[T.Online TA] 6.027475e-02
C(customer_type)[T.Group] 1.769141e-03
C(customer_type)[T.Transient] 4.542420e-171
C(customer_type)[T.Transient-Party] 1.446957e-54
lead_time 0.000000e+00
dtype: float64

Let's create a chart to visualize our data

Display coefficients and p-values
print(f"Coefficients:\n{cancellation_coef}\n")
print(f"P-values:\n{cancellation_values}\n")

In []: # I will need the confidence intervals. Remember the coef I already have them
cancell_conf = cancellation_model.conf_int()

Adding the coefficients to the confidence model
cancell_conf['coeff'] = cancellation_coef

To understand the data let's rename the columns
cancell_conf.columns = ['2.5%','97.5%', 'coeff']

Creating the chart
plt.figure(figsize=(10, 6))
plt.errorbar(cancell_conf.index, cancell_conf['coeff'], yerr=[cancell_conf['coeff']
plt.axhline(0, color='gray', linestyle='--')
plt.xticks(rotation=90)
plt.title('Logistic Regression Coefficients')
plt.xlabel('Variables')
plt.ylabel('Coefficient Value')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 18/36

In []: # Generate a range of lead time values
lead_time_range = np.linspace(df_cancellations['lead_time'].min(), df_cancellations
predict_data = pd.DataFrame({
 'lead_time': lead_time_range,
 'market_segment': 'Online TA', # Set to a reference category for simplicity
 'customer_type': 'Transient' # Set to a reference category for simplicity
})

Predict probabilities
predict_data['predicted_prob'] = cancellation_model.predict(predict_data)

Plot predicted probabilities
plt.figure(figsize=(10, 6))
plt.plot(predict_data['lead_time'], predict_data['predicted_prob'])
plt.title('Predicted Probability of Cancellation by Lead Time')
plt.xlabel('Lead Time (days)')
plt.ylabel('Predicted Probability of Cancellation')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 19/36

4.5 How about the lead time on bookings?

For this analysis, I will create a new database with the columns hotel, lead_time, is_canceled,
adr, arrival_date_year, arrival_date_month, market_segment, customer_type to analyze if the
lead time on bookings is affecting the cancellations.

Let's try to understand booking patterns so the hotel can create pricing strategies to offer their
clients.

4.5.a Database for the Bookings Analysis

hotel lead_time is_canceled adr arrival_date_year arrival_date_month market_segment cus

0 Resort
Hotel 342 0 0.0 2015 July Direct

1 Resort
Hotel 737 0 0.0 2015 July Direct

2 Resort
Hotel 7 0 75.0 2015 July Direct

3 Resort
Hotel 13 0 75.0 2015 July Corporate

4 Resort
Hotel 14 0 98.0 2015 July Online TA

In []: # Creating bookings database
df_book_lt = df_hb[['hotel','lead_time','is_canceled','adr','arrival_date_year','ar

df_book_lt.head(5)

Out[]:

In []: df_book_lt.dtypes

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 20/36

hotel object
lead_time int64
is_canceled int64
adr float64
arrival_date_year int64
arrival_date_month object
market_segment object
customer_type object
dtype: object

With the new database, let's visualize distributions and relationships between variables.

4.5.a.1 Bookings Analysis

Let's start analyzing the average lead time between the city and resort hotel to understand
which hotel has more anticipation with bookings.

hotel
City Hotel 109.741106
Resort Hotel 92.675686
Name: lead_time, dtype: float64

Correlation between lead time and cancellation rate: 0.29

Out[]:

In []: # Average lead time bookings
bavg_lead_time = df_book_lt.groupby('hotel')['lead_time'].mean()
print(bavg_lead_time)

In []: # Let's analyze the correlation between lead time and cancellations
corr_cancellation = df_book_lt['lead_time'].corr(df_book_lt['is_canceled']).round(2
print(f"Correlation between lead time and cancellation rate: {corr_cancellation}")

Data visualization
sns.barplot(x='is_canceled', y='lead_time', data=df_book_lt)
plt.title('Correlation between lead time and cancellations')
plt.xlabel('Cancellations')
plt.ylabel('Lead itme')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 21/36

The results of our analysis show that there is little association between the two variables, 'Lead
Time' and 'Cancellations', with a correlation coefficient of 0.29. The cancellations are
unaffected by the time.

Let's introduce a new variable to our analysis, the ADR (Average Daily rate), and try to
identify if this variable is affecting the cancellations in the hotel.

Correlation between lead time and ADR: -0.06

The results of the analysis show a correlation coefficient of -0.06. There is no correlation
between the two variables, 'Lead Time' and 'ADR'. This variable is not affecting the
cancellations.

Let's add some visualization to our data and try to figure out how variables are working
between them. This will help us find meaningful insights.

Visualizing the Lead Time Distribution

To visualize our data, I will use the values from the 'arrival_date_month' column. These values
and the histogram will help us better understand our analysis.

In []: # Correlation between lead time and ADR
corr_adr = df_book_lt['lead_time'].corr(df_book_lt['adr']).round(2)
print(f"Correlation between lead time and ADR: {corr_adr}")

In []: # Creating the visualization with the correlation between 'lead_time' and 'arrival_
Size of the boxplot
plt.figure(figsize=(12, 6))

Boxplot for the months
sns.boxplot(x='arrival_date_month', y='lead_time', data=df_book_lt)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 22/36

As expected, the most occupied time is when vacations occur. It starts in May and ends in
October. It is important to highlight September as one of the months showing the most
reservations.

Let's analyze how occupation distributes for the different hotel segments

plt.title('Lead Time Distribution Across Different Months')
plt.xlabel('Month')
plt.ylabel('Lead Time')
plt.show()

In []: # I will use the customer data from the customer_type column. Let's create our char
Giving our boxplot a size
plt.figure(figsize=(12,6))

Boxplot with the customer segments
sns.boxplot(x='customer_type', y='lead_time', hue='arrival_date_year', data=df_book
plt.title('Lead Time distribution for the different customer segments')
plt.xlabel('Customer Type')
plt.ylabel('Lead Time Distribution')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 23/36

After visualizing the data, let's discribe the conclusions by customer segments:

Transient customers, because there are too many outlier values. This customers shows
disparate reservations, but most of the time their bookings are close to the stay date.
Between the three years, their median lead time is approximately 50 days.
Contract customers, the variability in lead time bookings in 2015 shows a high variability,
and from 2016 it starts to decrease. Also, the median was around 50 days in 2015, but
then increased in 2016 to around 180 days, and by 2017, it decreased to approximately
150 days. The booking spread is also in advance of the arrival date.
A close look at Transient-Party customers data shows that the median number of
bookings significantly increased from 2015 to 2017, going from 80 to 100 days
approximately. There is not much variability in the lead time for bookings. They present a
reduction in lead time variability in 2017. In 2016, because of some outlier values, they
are starting to book far in advance of their arrival date.
Group customers show the lowest median lead time among all customers; they tend to
book near the stay date. It's important to notice that because of too many outlier values,
they also register bookings far in advance of the stay date. They are the most consistent
with their bookings across the years.

Recommendations:

Create targeted marketing strategies for customers based on their booking patterns. One
of them can be a booking discount with the purpose of encouraging customers to book at
a more advanced time.
Establish long-term pricing contracts to help advance bookings with the Contract
customers. This type of strategy will help to optimize revenue.
Is it possible to allocate resources and staffing to more predictable segments because of
their booking pattern to give them a different management approach.

4.6 Revenue Analysis

It's time to analyze the ADR (Average Daily Rate) for each hotel. Let's understand how much
revenue is made for each of the hotels, City, and Resort. I will start comparing the ADR
between both of them. Later, I will analyze the variation by segment and lead time.

For this new analysis I will create a new data frame.

In []: # Creating the new data frame for the revenue analysis
df_revAdr = df_hb[['hotel','adr', 'market_segment', 'customer_type', 'lead_time',

df_revAdr.head(5)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 24/36

hotel adr market_segment customer_type lead_time arrival_date_year reserved_room_type

0 Resort
Hotel 0.0 Direct Transient 342 2015 C

1 Resort
Hotel 0.0 Direct Transient 737 2015 C

2 Resort
Hotel 75.0 Direct Transient 7 2015 A

3 Resort
Hotel 75.0 Corporate Transient 13 2015 A

4 Resort
Hotel 98.0 Online TA Transient 14 2015 A

4.6.a Comparing the ADR between City and Resort Hotels.

 hotel adr
0 City Hotel 105.31
1 Resort Hotel 94.95

Out[]:

In []: # Grouping the data by hotel
mean_Adr = df_revAdr.groupby('hotel')['adr'].mean().round(2).reset_index()

print(mean_Adr)

In []: # Visualizing the data with a barplot
plt.figure(figsize=(8, 6))

Creating the plot
ax = sns.barplot(x='hotel', y='adr', data=mean_Adr)
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Daily Rate by Hotel Type')
plt.xlabel('Hotel Type')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 25/36

The data shows us that the ADR for the City Hotel is 105.31, and for the Resort Hotel is 94.95.

4.6.b Analyzing the ADR variation between Room Types, Market Segment and Lead Time.

4.6.b.1 ADR variation by Room Types.

 reserved_room_type adr
0 A 91.0
1 B 91.0
2 C 160.0
3 D 121.0
4 E 125.0
5 F 168.0
6 G 176.0
7 H 188.0
8 L 125.0
9 P 0.0

In []: # Variation by room types
mean_adr_rt = df_revAdr.groupby('reserved_room_type')['adr'].mean().round().reset_i

print(mean_adr_rt)

In []: # Creating the plot
plt.figure(figsize=(10, 6))

ax = sns.barplot(x='reserved_room_type', y='adr', data=mean_adr_rt)
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Daily Rate by Room Type')
plt.xlabel('Room Types')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 26/36

When I analyze the ADR by 'Room Type', the data shows us that room H has the highest
average daily rate with a total of $188.-. Then, with the lower average daily rate, we have
rooms A and B. For this analysis, I won't consider the parking spaces.

Room Types variation by Hotels

In []: # Creating the plot
plt.figure(figsize=(14, 8))

ax = sns.barplot(x='reserved_room_type', y='adr', hue='hotel', data=df_revAdr)

plt.title('Average Daily Rate by Room Type and Hotel')
plt.xlabel('Room Types')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 27/36

When I split the data between the two hotels, room H only reports at the Resort Hotel, and
with room C and G, these rooms are the ones with the highest ADR. Different is the case of the
City Hotel, where rooms G and F are the ones with the highest ADR. And rooms C, A, and B
show the lowest ADR.

Looking at both analyses, they show different numbers for the ADR. This is important to keep
in mind for the purpose of creating special offers for each Hotel.

Let's analyze if the hotels assign the rooms the customers have booked.

I will compare the values from the column 'reserved_room_type' and 'assigned_room_type'. I
will store the result of the comparison into a new column called 'room_assigned_correctly', with
0 for False values, and 1 for True values.

hotel adr market_segment customer_type lead_time arrival_date_year reserved_room_type

0 Resort
Hotel 0.0 Direct Transient 342 2015 C

1 Resort
Hotel 0.0 Direct Transient 737 2015 C

2 Resort
Hotel 75.0 Direct Transient 7 2015 A

3 Resort
Hotel 75.0 Corporate Transient 13 2015 A

4 Resort
Hotel 98.0 Online TA Transient 14 2015 A

In []: # Let's compare the values from the columns
df_revAdr['room_assigned_correctly'] = (df_revAdr['reserved_room_type'] == df_revAd

df_revAdr.head()

Out[]:

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 28/36

Now with the new column let's visualize how the room assignment is working

1 104469
0 14917
Name: room_assigned_correctly, dtype: int64

In []: # Counting the values
room_corr_assigned = df_revAdr['room_assigned_correctly'].value_counts()

print(room_corr_assigned)

Total and percentage variables to use on our charts
total_rca_count = room_corr_assigned.sum()
rca_percentage = (room_corr_assigned / total_rca_count) * 100

labels = room_corr_assigned.index
Using a function to create the labels
labels = [f'{rooms} ({count})' for rooms, count in zip(room_corr_assigned.index, ro

Chart size
fig, ax = plt.subplots(figsize=(6, 9))

Chart generation
plt.pie(room_corr_assigned, labels=labels, autopct='%1.1f%%')
ax.legend(['True', 'False'], loc='upper right', title='Comparison')
plt.legend(title='Correctly')
ax.set_title('Rooms Assignment', fontsize=16, fontweight='bold')
plt.axis('equal')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 29/36

Analyzing room assignment, shows us that 87.5% of the rooms are assigned correctly, this
means that the customers recieve the room they booked for. It's recommended for a future, try
to reduce the 12.5% of wrong assignment of the rooms. A higher percentage of wrong room
assignment can produce discomfort with the customers and at some point lose them.

It will be interesting to confirm later whether or not the 12.5% translates to a room upgrade. A
nicer room almost always means a happier customer.

4.6.b.2 ADR variation by Market Segments.

In []: # Variation by market segment
mean_adr_mkt = df_revAdr.groupby('market_segment')['adr'].mean().round().reset_inde

print(mean_adr_mkt)

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 30/36

 market_segment adr
0 Aviation 100.0
1 Complementary 3.0
2 Corporate 69.0
3 Direct 115.0
4 Groups 79.0
5 Offline TA/TO 87.0
6 Online TA 117.0

Analyzing the ADR by market segment shows that Direct, Aviation, and Online are where the
hotel receives the most reservations. These markets are where the Hotel can offer special
benefits or direct the offers to other segments to help them grow.

Market Segment variation by Hotels

In []: # Creating the plot
plt.figure(figsize=(10, 6))

ax = sns.barplot(x='market_segment', y='adr', data=mean_adr_mkt)
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Daily Rate by Market Segment')
plt.xlabel('Market Segment')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

In []: # Creating the plot
plt.figure(figsize=(12, 8))

ax = sns.barplot(x='market_segment', y='adr', hue='hotel', data=df_revAdr)
plt.title('Average Daily Rate by Market Segment by Hotels')
plt.xlabel('Market Segment')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 31/36

The analysis of the market segments by Hotels, doesn't show too much variation. This analysis
helps us create more specific offers by hotel and market segment.

4.6.b.3 ADR variation by Lead Time.

 lead_time adr
0 0 83.0
1 1 90.0
2 2 94.0
3 3 93.0
4 4 95.0
..
474 622 62.0
475 626 63.0
476 629 62.0
477 709 68.0
478 737 0.0

[479 rows x 2 columns]
 lt_enclosed adr
0 0-30 102.0
1 31-90 107.0
2 91-180 109.0
3 181-365 95.0

In []: # Variation by Lead Time: Because the values are too big, I separate the values int
Enclosing the data values
df_revAdr['lt_enclosed'] = pd.cut(df_revAdr['lead_time'], bins=[0, 30, 90, 180, 365
mean_adr_ltbucket = df_revAdr.groupby('lt_enclosed')['adr'].mean().round().reset_in
mean_adr_lt = df_revAdr.groupby('lead_time')['adr'].mean().round().reset_index()

print(mean_adr_lt)
print(mean_adr_ltbucket)

In []: # Creating the plot
plt.figure(figsize=(10, 6))

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 32/36

Lead Time variation by Hotels

ax = sns.barplot(x='lt_enclosed', y='adr', data=mean_adr_ltbucket)
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Daily Rate by Lead Time')
plt.xlabel('Lead Time')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

In []: # Creating the plot
plt.figure(figsize=(12, 8))

ax = sns.barplot(x='lt_enclosed', y='adr', hue='hotel', data=df_revAdr)
plt.title('Average Daily Rate by Lead Time by Hotels')
plt.xlabel('Lead Time')
plt.ylabel('ADR (Averaga Daily Rate)')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 33/36

4.7 Customer Segmentation

adults 221627.0
children 12403.0
babies 949.0
dtype: float64

In []: customer_count = df_hb[['adults', 'children', 'babies']].sum()

print(customer_count)

Total and percentage variables to use on our charts
total_ctmr_count = customer_count.sum()
ctmr_percentage = (customer_count / total_ctmr_count) * 100

Using a function to create the labels
labels = [f'{customer} ({count})' for customer, count in zip(customer_count.index,

Chart size
fig, ax = plt.subplots(figsize=(6, 9))

Chart generation
plt.pie(customer_count, labels=labels, autopct='%1.1f%%')
plt.legend(title='Customers', loc='upper right')
ax.set_title('Hotel Customers', fontsize=16, fontweight='bold')
plt.axis('equal')
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 34/36

In []: # Count the different countries from where the customers are
country_count = df_hb['country'].value_counts()

print(country_count)

Because there are many different countries, I will group those that have less tha
less_than_500_customers = 500
new_ctry_count = country_count[country_count < less_than_500_customers].sum()
country_count = country_count[country_count >= less_than_500_customers]
country_count['OTHERS'] = new_ctry_count

Let's verify how the last code works
print(country_count)

Creating the labels for our chart
labels = [f'{country} ({count})' for country, count in country_count.items()]

Plotting using Bar Chart
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(country_count.index, country_count.values)
ax.set_xticklabels(labels, rotation=90)
ax.set_title('Hotel Customers by Country')
ax.set_xlabel('Country')
ax.set_ylabel('Number of Customers')
plt.tight_layout()
plt.show()

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 35/36

PRT 48586
GBR 12129
FRA 10415
ESP 8568
DEU 7287
 ...
DJI 1
BWA 1
HND 1
VGB 1
NAM 1
Name: country, Length: 178, dtype: int64
PRT 48586
GBR 12129
FRA 10415
ESP 8568
DEU 7287
ITA 3766
IRL 3375
BEL 2342
BRA 2224
NLD 2104
USA 2097
CHE 1730
CN 1279
AUT 1263
SWE 1024
CHN 999
POL 919
ISR 669
RUS 632
NOR 607
ROU 500
OTHERS 6871
Name: country, dtype: int64

25/6/24, 16:57 hb_analysis

file:///C:/Users/imgal/OneDrive/Escritorio/hb_analysis.html 36/36

